

Towards an Equitable AI Cloud: Leveraging Agility and Innovation

March 2-5, 2025 | Mesa, Arizona

Addressing the AI Wave: Responsible Computing

THE TIME IS NOW TO CHANGE THE TRAJECTORY OF COMPUTING

The Third Phase of Compute: Cloud + AI Compute

Software: Specialized

Software: Monolithic

Cloud Native Processors are the Hardware Required for Cloud and Al Infrastructure and Software

Software: Microservices—Frameworks

Ampere's Innovative Product Portfolio

Leadership Performance Per Rack for AI Compute in All Environments

Industry Leading Compute Density and Efficiency Drove New Approaches for Current Products

The Next Advancement in AI Compute: AmpereOne® Aurora

Integrated

Al Acceleration Silicon Directly in the SOC

Air Cooled

Deployable in All Existing Data Centers

Efficient

Accelerate Meeting Our Industry's Climate Goals

- Up to 512 AmpereOne custom cores delivering over 3x the performance per rack of current AmpereOne processors
- AmpereOne Scalable Mesh that allows compute of all types to be seamlessly connected
- Ampere AI IP integrated directly in the SoC via
 Die-to-Die Interconnect with high bandwidth memory

The Future Demands New Innovation to Fuel Rapidly Growing AI Compute Market

AMPERE_®

A Modern Semiconductor Company Building the First Cloud Native Processors for the Sustainable Cloud

Building The Cloud Native Processor Delivering Performance and Power Efficiency

A Competitive Cloud Native Processor (CNP) & System

High core count – dense compute Demanding per/core performance Air cooled power efficient operation 24/7 uptime @ high utilization 5yr+ reliability in operation Wide range of software applications Leading edge process node Multi-chip integration Complex high layer substrates Advanced packaging (2.5D, 3D) High pin count socket Dense system boards Constrained thermal/mechanical

Matrix of critical ingredients | Test points | Test vectors

Silicon, substrate | Socket | Platform | Wafer probe | ATE | SLT | Substrate/socket test Process | Leakage | Temp | Voltage | Pin count | Yield | Reliability | Connectivity

Die-Level Challenges How Ampere is Addressing Them

Technology Node Related Testing Challenges

- Leading node FET/device variation → Coverage of all process variations (FF,SS,TT) and PVT corners
- High density and chiplets → Complex multi-die testing & selection pre-post assembly
- Higher system utilization in cloud with operation close to TDP → increased device stress, PVT test
- 5+ yr Reliability testing and qualification complexity → higher current densities causing thermal runaway risk under HTOL conditions

PVT: ProcessVoltageTemp HTOL: HighTempOperatingLife TDP: ThermalDesignPoint

Designing at the leading edge uncovers new challenges and accelerates existing ones

Design Choices for Enhanced Testing

Complex Test Hardware	Monitor, Detect, Mitigate: On-die Monitors	Design Content for Coverage
 Complex Probe cards and load boards Complex system level test Hardware and test flow and content Thermal and voltage controls Enable fine grain PVT testing Ensuring test at all combinations Requires multiple insertions 	 Spec sensors and on-die compensation Process monitoring, device aging compensation, voltage droop mitigation Limits management IP: peak current limiting, thermal sensor and limiting 	 High scan and test coverage High Memory-bist, IO-Bist coverage Ensuring high test content at Probe Identifying Known-Good die at Probe

AmpereOne Production Flow

Wafer Probe	Test Covera
Good Die Assembly	 Stuck-at-fau
	Transition-fa
	• MBIST
Multiple FT Insertions	• BSCAN
	 IO Loopbac
	OS Function
System Level Test	Perf benchr
	• Binning:
Mark & Fuse	Core count
	Frequency
Final QA & Ship	• Leakage

- age
- ult
- ault

- :k
- nal tests
- marks

- Process (SS, FF, TT):
 - Multiple chiplet combinations
 - Multiple corner wafers and dies harvested using WAT and leakage
- Voltage:
 - Positive/negative margins as required by data-sheet and PHYs/IOs
- Temperature:
 - Full range of operating temperature

The Rest of the System is as Critical: Substrate, Socket, Platform Co-design, Co-test with Silicon-die is Critical

Ampere Server CPUs: Package/Substrate

Challenges:

- Chiplet trend for silicon cost reduction
- Large substrate to support increasing die count, Pin count
- Low-power & high-density Die-to-Die interconnects
- Reduced warpage for LGA socketing
- Test & screening at various packaging levels: bare die, RDL module, and package

Testing & Design Considerations :

- Via-stack designs
- Advanced die-die interconnect solutions
- Highly Engineered Materials to reduce the coefficient of thermal expansion
- Low Df/Dk build-up material choices for improved signaling
- Optimized capacitor selection and placement to reduce power supply noise

Ampere® Altra® Platforms For Modern Compute

Packaging Strategy

Innovations Needed:

- Design for tests with built-in features such as daisy-chain die-cracking & LGA-contact monitors as well as circuit/bump/contact redundancies
- Cost effective 2.5D and 3D packaging technologies
- Fine-pitch probing card for chip & package screening
- Strengthen Eco-system collaborations to jointly develop enabling packaging and testing technologies
- Continue pushing the limits to address ever increasing signal and power delivery challenges

Ampere Server CPUs: Socket

Challenges:

- Large body size and high pin count sockets (>10K contacts), various speed interfaces (DDR, CCIX, PCIe)
- SMT challenges: single vs split body sockets
- Socket warpage management & solderability
- Load application mechanism: load plate vs. heatsink-loading
- Multiple socket types:
 - ATE Socket
 - Validation Socket—enables multiple insertions >5000
 - Production Socket
 - HTOL/Burn-in Socket
 - Metal spring, Elastomer
- Leads to Inconsistent:
 - Loading Approach, Contacts, Test type, Socket Height etc.
 - Current handling, Signal integrity and Socket Cost

Ampere® Altra® Platforms For Modern Compute

CCIX: Cache Coherent Interconnect for Accelerators

Socketing Technology: Validation/Production/FT/SLT/Burn-in Socket

Innovations Needed:

- Standardization of socket technology/contact types
 (SLT/ATE/FT/HTOL)
- Loading Mechanism -exert right amount pressure on the exposed die and stiffener
- Socket cost reduction for high pin count (>10k contacts)
- Surface mount process for high pin count LGA/BGA and large body size production sockets

Ampere Server CPUs: System/Platform

Challenges:

- Complexity in PCB, high I/O count, high-speed interfaces (DDR/PCIe), complex clocking, VR solution, routing for SI/PI
- High TDP operating conditions

Testing & Design Considerations:

- Modular board design for best SI/PI
- VRTT: special tool to validate PI/VR & Platform PDN response
- Improved thermal design and materials (TIM)
- · Mechanical shock/vibe for platform stability

Ampere is working on extending air cooling to AI compute

VR: Voltage Regulator; VRTT: Voltage Regulator Test Tool; PI: Power Integrity; PDN: Power Delivery Network

Ampere® Altra® Platforms For Modern Compute

Platform Level Validation / Characterization

Challenges	Innovation Needed	Call to Action
• SI issues	Validation SI tool	Tools for debugging
Limitation of traditional	Beyond Industry compliance	 Prioritized solutions
methods	Optimizing feedback loop	• FA feedback
 Leveraging off-the-shelf IP design & tuning features 	 Cost effective and scalable tools 	 Hardware-based, cost-effective tools
Platform dependency	Eve diagram visualization	 Advanced training and
 Limitations of SI/PI simulation methodologies 		equalization techniques
SI: Signal Integrity; PI: Power integrity		

In Closing

Ecosystem Partnership

Silicon/IP Substrate

Socket

Platform

Ampere is a 7-year young company that is:

Pushing technology limits in our design choices across all the ingredients

Paying careful attention to ensure robust co-design and co-test across all the ingredients

Continued innovation and partnerships in industry to deliver game changing products

Presentation / Copyright Notice

The presentations in this publication comprise the pre-workshop Proceedings of the 2025 TestConX workshop. They reflect the authors' opinions and are reproduced here as they are planned to be presented at the 2025 TestConX workshop. Updates from this version of the papers may occur in the version that is actually presented at the TestConX workshop. The inclusion of the papers in this publication does not constitute an endorsement by TestConX or the sponsors.

There is NO copyright protection claimed by this publication. However, each presentation is the work of the authors and their respective companies: as such, it is strongly encouraged that any use reflect proper acknowledgement to the appropriate source. Any questions regarding the use of any materials presented should be directed to the author/s or their companies.

The TestConX logo and 'TestConX' are trademarks of TestConX.

