Diagnostic plan for ATE production test board of large-scale chip

Jiang Lei UNISOC

Shanghai • October 31, 2024

1

TestConX China Workshop

TestConX.org

Contents

- Current situation of ATE board
- Diagnostic method of ATE board
- Dummy Device design & fabrication
- Dummy Device reference case
- Diagnostic program of ATE board
- Summary of diagnostic plan

Diagnostic plan for ATE production test board of large-scale chip

TestConX China Workshop

TestConX.org

Current situation of ATE board

- High Site Count, 12 or 16 Sites
- Large Size
- Too many devices
- Difficulty in Design & Fab
- Long delivery cycle
- High Cost
- Difficulty in Debug & Maintenance

Diagnostic plan for ATE production test board of large-scale chip

TestConX.org

Session 3 Presentation 4

TestConX China 2024

Current situation of ATE board

- Only PCB testing was completed during the fab process.
- The components have not been tested.

Diagnostic method of ATE board

- Tester pin function:
 - Pin Parametric Measurement Units(PPMU)

DUT

China

- Arbitrary Waveform Generator (AWG)
- Driver

Tester

- Digitizer
- Comparator
- Active Load

V = I * R

Test**ConX中国**

5

TestConX China Workshop

TestConX.org

Diagnostic method of ATE board

- Large proportion of components are not connected to the tester
- Dummy Device or additional design is needed to improve test coverage

Module	Circuit on ATE board	Testability of Components		
High Speed BIST	$DUT \to Switch \to DUT$	No		
Resistance /Voltage Trim	DUT \rightarrow Peripheral circuit \rightarrow Tester	Partial Yes		
RF Circuit	$\begin{array}{l} DUT \to RF \text{ Matching Network} \\ \to Tester \end{array}$	No		
ADC/DAC	DUT → Op-Amp Circuit → Tester	No		
Clock Input	TCXO/CLK IC → DUT	No		

Diagnostic plan for ATE production test board of large-scale chip

Conoral ATE Test Circuit

6

TestConX China Workshop

TestConX.org

Diagnostic method of ATE board

Original Coverage 44%

	Test Items		Additional [Design	With Dummy Device		
		Total Qty	Testable Qty	%	Testable Qty	%	
	IO Leakage	4080	3664	0.898	3664	0.898	
Path	IO Connectivity	4080	3632	0.8902	3632	0.8902	
	Power Leakage	496	496	1	496	1	
	Path Resistance	4576	0	0	C	0	
	Path Functionality	0	0	0	0	0	
Relay	Coil Status	240	220	0.9167	240	1	
Сар	Capacitor	413	121	0.293	329	0.6804	
	Cap Bank	424	336	0.7925	368	0.8679	
Resistor		1319	571	0.4329	1109	0.724	
Diode		233	229	0.9828	229	0.9828	
	xc6219a182mr	16	0	0	16	1	
	wl2820d18-4/tr	16	0	0	16	1	
	tmuxhs4412iruat	160	80	0.5	160	1	
IC	tmp451aqdqwrq1	16	0	0	16	1	
	mic39102ym	16	0	0	16	1	
	adg1606bruz	64	64	1	64	- 1	
	52mhz	16	0	0	16	1	
	mt25ql128	1	1	1	1	1	
	mc33063ad	4	0	0	4	1	
Component							
Overall		2938	1622	55.21%	2584	87.95%	

7

Dummy Device design & fabrication

- Easy to design
- Same Size with chip POD
- PCB PTH(Plated through hole) Process
- With Solder Ball or NiPdAu PAD
- Panel Fab

Schematic Design

PCB Design

TestConX China Workshop

TestConX.org

Reference case1 – High Speed BIST

• With Dummy Device, we can test all the high speed analog switch

TestConX China Workshop

TestConX.org

Reference case2 – RF Chip

• With Dummy Device, we can test both the RF Path and IQ Path

10

TestConX China Workshop

TestConX.org

٠

Diagnostic Program of ATE board

Open Socket Flow(Without Dummy Device)

TestConX.org

Diagnostic Program of ATE board

Hierarchical Modular Design For Program

TestConX China Workshop

TestConX.org

Diagnostic Program of ATE board

• Easy to develop programs

	Test Pin Parameters Paramete			Relay Control Setup Parameters			Datalog Results Parameters				Datalog Results		
TestType	TestPin	Force Value	Clamp Value	Initial Value	UDB CtrlOn	UDB CtrlOff	PPMU Ctrl Pin Volt	Limit Hi	Limit Lo	Expect Value	Unit	Setup Time	Coms On Path
RES_FIM V	Pin1	I_value	H:1;L:0	Pin2=0V	Utility Pin1	Utility Pin5	CtrlPin1=0; CtrlPin2=3.3	R_limitHi	R_limitLo	R_Value	Ohm	Waiting Time	Rxx; Kxx;
CAP_FI MV	Pin3	I_value	H:1;L:0	Pin4=0V	Utility Pin2	Utility Pin6	CtrlPin3=0; CtrlPin4=3.3	C_limitHi	C_limitLo	C_Value	F	Waiting Time	Схх; Кхх
RLY_FIM V	Pin5	I_value	H:1;L:0	Pin6=0V	Utility Pin3	Utility Pin7	CtrlPin5=0; CtrlPin6=3.3	V_limitHi	V_limitLo	/	V	Waiting Time	Кхх; Кхх

Diagnostic plan for ATE production test board of large-scale chip

TestConX.org

14

TestConX China Workshop

TestConX.org

COPYRIGHT NOTICE

The presentations in this publication comprise the pre-workshop Proceedings of the TestConX China workshop. They reflect the authors' opinions and are reproduced here as they are planned to be presented at TestConX China. Updates from this version of the papers may occur in the version that is actually presented at TestConX China. The inclusion of the papers in this publication does not constitute an endorsement by TestConX or the sponsors.

There is NO copyright protection claimed by this publication. However, each presentation is the work of the authors and their respective companies: as such, it is strongly encouraged that any use reflect proper acknowledgement to the appropriate source. Any questions regarding the use of any materials presented should be directed to the author/s or their companies.

The TestConX logo, 'TestConX', and 'TestConX China' are trademarks of TestConX.

