TWENTY-FOURTH ANNUAL

<u>tentve</u>

ConX

DoubleTree by Hilton Mesa, Arizona March 5-8, 2023

With Thanks to Our Sponsors!

With Thanks to Our Sponsors!

COPYRIGHT NOTICE

The presentation(s) / poster(s) in this publication comprise the Proceedings of the TestConX 2023 workshop. The content reflects the opinion of the authors and their respective companies. They are reproduced here as they were presented at the TestConX 2023 workshop. This version of the presentation or poster may differ from the version that was distributed at or prior to the TestConX 2023 workshop.

The inclusion of the presentations/posters in this publication does not constitute an endorsement by TestConX or the workshop's sponsors. There is NO copyright protection claimed on the presentation/poster content by TestConX. However, each presentation / poster is the work of the authors and their respective companies: as such, it is strongly encouraged that any use reflect proper acknowledgement to the appropriate source. Any questions regarding the use of any materials presented should be directed to the author(s) or their companies.

"TestConX", the TestConX logo, and the TestConX China logo are trademarks of TestConX. All rights reserved.

Thermal

TestConX 2023

Thermal and Mechanical Challenges for Test Handlers

Ernest Blanco & Jerry Tustaniwskyj Cohu, Inc

Mesa, Arizona • March 5-8, 2023

TestConX Workshop

www.testconx.org

March 5-8, 2023

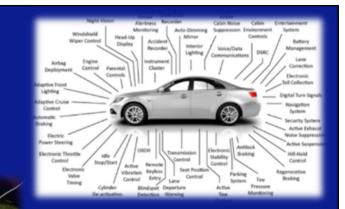
TestConX 2023

Thermal

Content

- Industry direction
- Different device types
- Device test flow
- Device tests
- Parallelism

- Device handling
- Temperature control
- Vision system
- MEMS

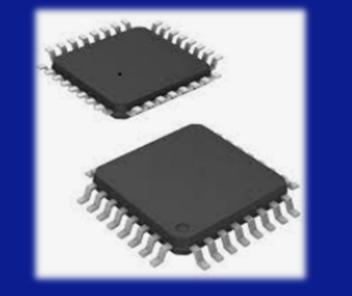

Thermal and Mechanical Challenges for Test Handlers

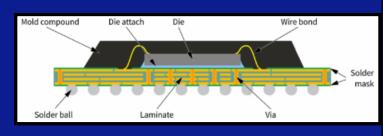
TestConX 2023

Industry Direction

- 2 trends:
 - Devices shrinking
 - Integrated into more / new applications
 - Devices size increasing
 - Greater power levels

Thermal and Mechanical Challenges for Test Handlers




Thermal

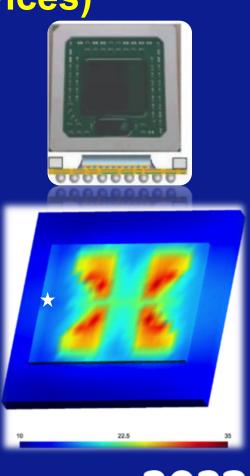
TestConX 2023

Different device types (Smaller devices)

- Typical types: Over-molded & lidded
 QFN, QFP & BGA
- Challenges:
 - Plastic over-mold thermally insulates die
 - Inverted thermal resistance (lower R_{ib} vs R_{ic})
 - Shrinking devices < 2mm x 2mm</p>
 - Pick & place vs thermal fighting for limited area
 - Mechanical alignments
 - Smooth handling a must!
 - Fragile leads on some devices (QFP shown)

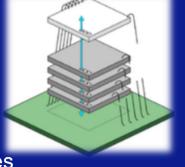
Thermal and Mechanical Challenges for Test Handlers

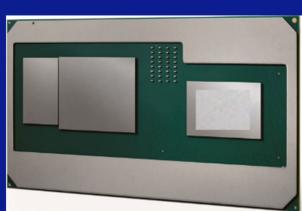
Thermal

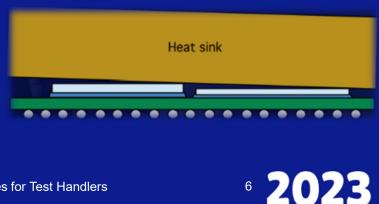

TestConX 2023

Different device types (Large devices)

- Typical types: Lidded & Bare die
 BGA, LGA
- Challenges:
 - Bare die cracking from hard contact
 - Deep socket designs
 - Both (above) require interposer hurting thermal performance
 - Temp feedback sensor far from high power die zones
 - Marring / residue on die or lid


Thermal and Mechanical Challenges for Test Handlers




TestConX 2023

Different device types (Larger devices)

- Typical types: Multi chip modules
 BGA, LGA
- Challenges:
 - Devices > 100mm x 100mm
 - Size & weight exceeding handler's capabilities
 - Power dissipation >1000W
 - Die stacking increases thermal resistance
 - Higher insertion forces driving thick stiffeners
 - Hide the die require interposer
 - Planarity between die affecting thermal contact

Thermal and Mechanical Challenges for Test Handlers

TestConX Workshop

TestConX 2023

Device test flow

- Wafer: Test ICs on the Si
- Functional: Test device performance
- Burn in: Test for infant mortality
- System level: Test device in real world use context

7 2023

Thermal and Mechanical Challenges for Test Handlers

TestConX 2023

Thermal

Device tests (Temperature effects)

• Higher temperature results in lower reliability

 $A_T = e^{\frac{E_a}{k} \left(\frac{1}{T_{use}} - \frac{1}{T_{test}}\right)}$ Arrhenius equation

» E_a is the activation energy (from reference table)

» k is Boltzmann's constant (8.617x10⁻⁵ eV/K)

» T_{use} is the DUT junction temperature at application use

» $\mathsf{T}_{\mathsf{test}}$ is the DUT junction temperature in test

– Failure rate typically doubles every 15°C

- Circuits typically slow down with temperature
- Leakage current increases with temperature
 - \Rightarrow More power dissipation

TestConX 2023

Thermal

Device tests (Voltage Acceleration)

• Voltage acceleration is given by:

$$A_V = e^{\beta(V_{test} - V_u)}$$

• Where:

 V_u and V_{test} are use and test (stress) voltages, in volts β is the voltage acceleration term (4 per volt is typical)

- Goal is to maximize V_{test} without damaging the DUT
- Leakage current increases with voltage

 \Rightarrow More power dissipation

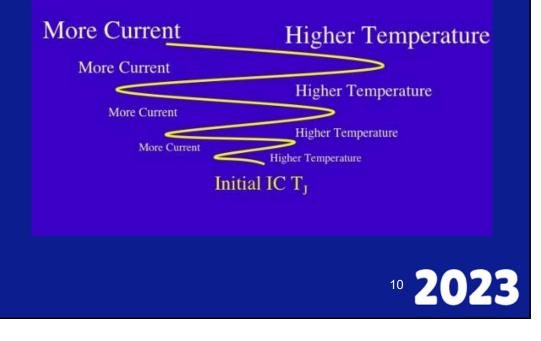
TestConX 2023

Session 9 Presentation 3

Thermal

Device tests (Leakage current effects)

- Test stresses DUTs with voltage and temperature
 - Voltage and/or temperature increase will increase leakage current

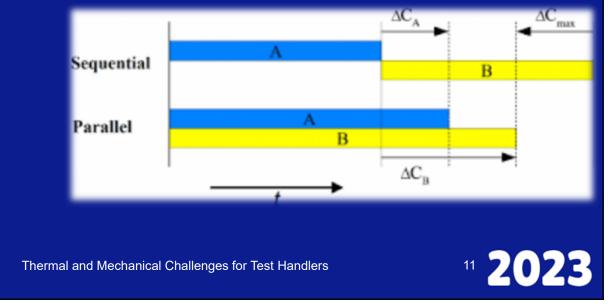

$$I_{leak} = \mu_0 C_{OX} \frac{W}{L} e^{b(V_{dd} - V_{dd0})} V_T^2 \left(1 - e^{\frac{-V_{dd}}{V_T}}\right) e^{\frac{-|V_{th}| - V_{off}}{nV_T}}$$

 $- \Rightarrow$ More power dissipation

Test**ConX**®

THERMAL RUNAWAY

 Thermal runaway is a positive feedback phenomena in which leakage current and temperature interact in an exponential fashion with each other


Thermal

TestConX 2023

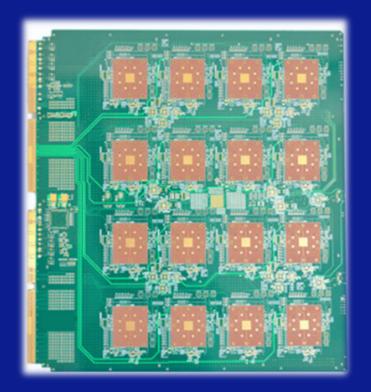
Parallelism (in test)

- Test time expensive on test floor
 - Target less test time per device
 - Maximize UPH (Units Per Hour)
- Push to run programs in parallel for test
 - \Rightarrow increases device power

Test**ConX**®

www.testconx.org

March 5-8, 2023


Thermal

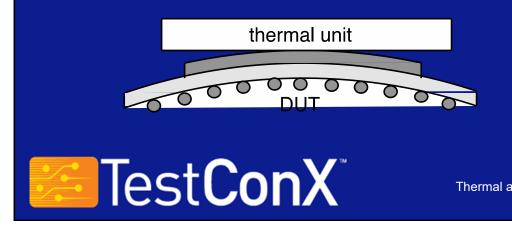
TestConX 2023

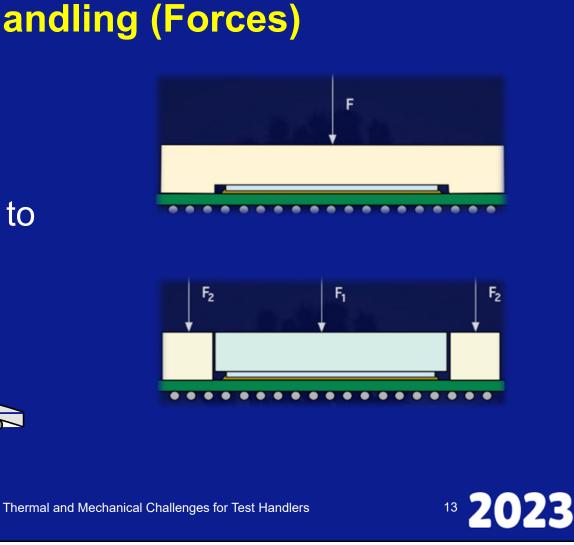
Parallelism (Mechanical)

- ⇒ x64 and possibly higher
 Maximize UPH (Units Per Hour)
- Power supply and cooling magnitude impractical
- Handler doesn't grow proportionally

 Pitch is reduced
- Scaling of mechanism complexity
- Higher socket insertion force

Thermal and Mechanical Challenges for Test Handlers



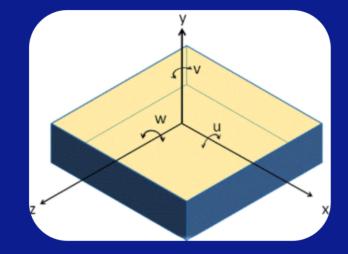

Thermal

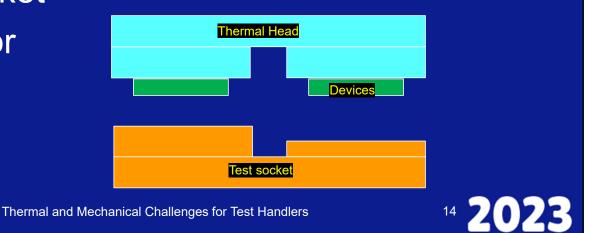
TestConX 2023

Device handling (Forces)

- Devices are not flat
- Devices can be bent with uneven loading
- Uniform applied force key to proper insertion
 - Socket and die force

TestConX Workshop


www.testconx.org


March 5-8, 2023

TestConX 2023

Device handling (Gimbaling and compliance)

- Accurately controlling device's 6 DOF is critical
 - Each device requires independent control
- Gimbal to make device coplanar & aligned with socket
- Compliance to account for tolerance stack up

TestConX 2023

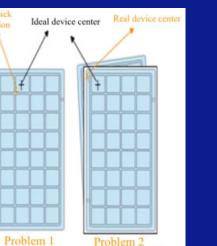
Device handling (Thermal considerations)

- Thermal expansion misaligns components
- Multiple test temperatures
 - Re-alignment not practical
- Proper soak temps critical to test time
 - Direct effect on UPH

Thermal and Mechanical Challenges for Test Handlers

Presentation 3 Session 9

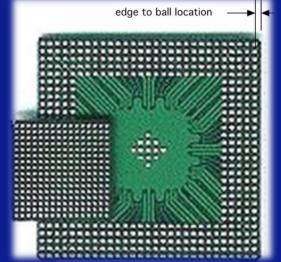
Thermal

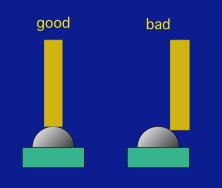

TestConX 2023

Device handling (IO alignments)

- Device transfer customer tray to • handler
- Sub assembly tolerances must combine to small values
 - Tolerance stack up
- High speed moves > 1m distances
- Accelerations > 2 g's •

Thermal and Mechanical Challenges for Test Handlers

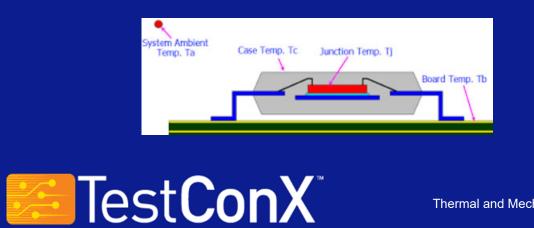


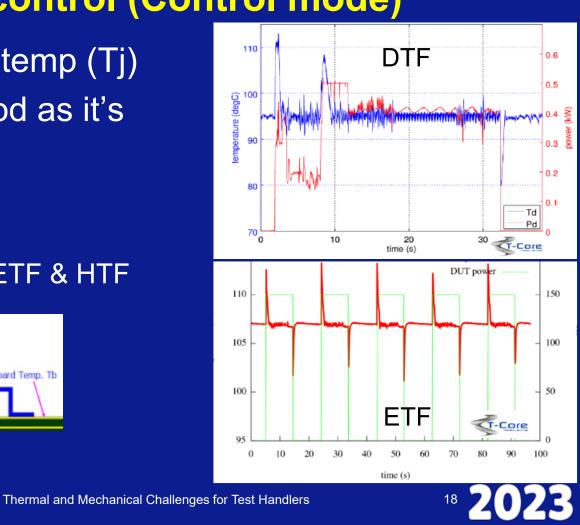

TestConX 2023

Thermal

Device handling (Contactor alignment)

- 0.4mm pitch common
 - Tighter pitch coming
- Tolerances:
 - Device to edge tolerance
 - Other package tolerance
 - Thermal expansion
 - Cu lead frame 17 ppm/°C
 - Molding compound 10 25 ppm/ °C
 - 100°C temperature change
 - 25mm x 25mm package, 17 ppm/ °C
 - − → 0.04mm expansion (non-correctable)
 - Socket/contactor expansion must be considered

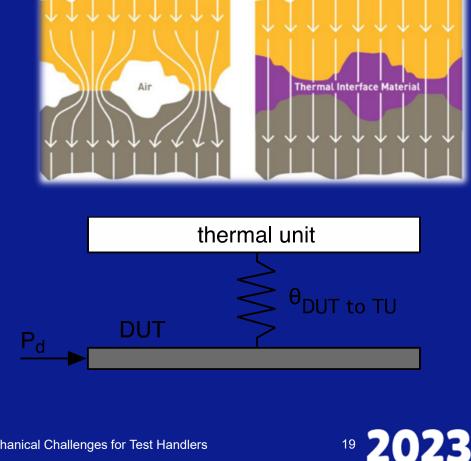

Thermal and Mechanical Challenges for Test Handlers



TestConX 2023

Temperature control (Control mode)

- Ideal test controls junction temp (Tj)
- Control system only as good as it's feedback
 - Tj feedback: DTF
 - Device power feedback: PF
 - No internal device feedback: ETF & HTF



Thermal

TestConX 2023

Temperature control (Thermal resistance)

- 2 knobs for increased power dissipation
 - Lower thermal resistances
 - Interfaces
 - Device construction
 - Lower coolant temperature
 - Hot test best for power dissipation

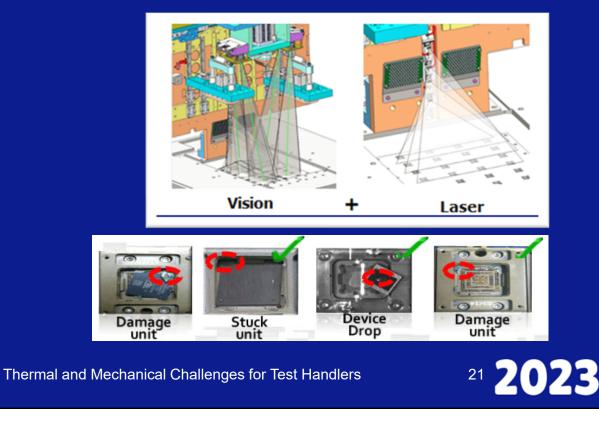

Thermal and Mechanical Challenges for Test Handlers

TestConX 2023

Temperature control (Cooling mediums)

- Many options with different pros and cons
 - Customer preference/capabilities vary
 - Options: Air, water, HFE, LN2 & refrigerant
- Changing cooling mediums impractical in the field
 - Leads to over-engineered solutions

Thermal and Mechanical Challenges for Test Handlers

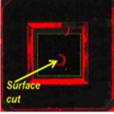

TestConX 2023

Vision System (Process control)

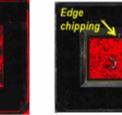
- Out of pocket detection
 - Prevent damaging parts during pick and place
- Damaged devices
- Dropped devices
- Stuck devices
- etc.

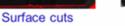
Thermal

TestConX 2023

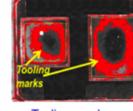

Vision System (Quality control)

Look for device defects

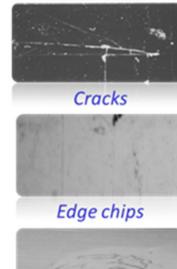

 Compare incoming to outgoing devices (handler induced?)


Inspect chuck

- Examine surface contacting device for contamination
 - Heater on thermal chuck
 - Pedestal (part of heater)



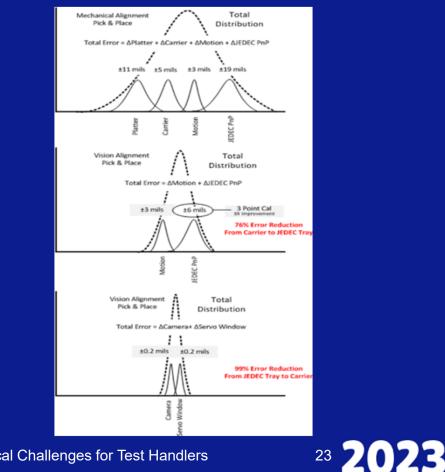
3/2013 TestConX



Foreign material

Thermal and Mechanical Challenges for Test Handlers

FM Contamination

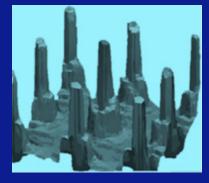

Presentation 3 Session 9

TestConX 2023

Thermal

Vision Systems (Alignment)

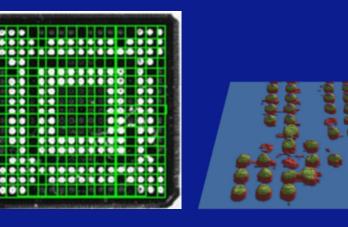
- Tool calibration reduces ~75% of alignment errors
- In situ alignment eliminates ~99% of errors
- **Based on device IO matrix** (solder balls, etc) corrections in X, Y, and θ

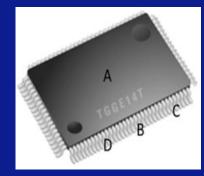

Thermal and Mechanical Challenges for Test Handlers

TestConX 2023

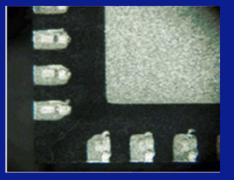
Thermal

Vision system (Bottom side defects)


- BGA:
 - Damaged balls
 - Missing balls
 - Extra balls
 - Solder debris



PGA – bent pin



QFP - bent lead

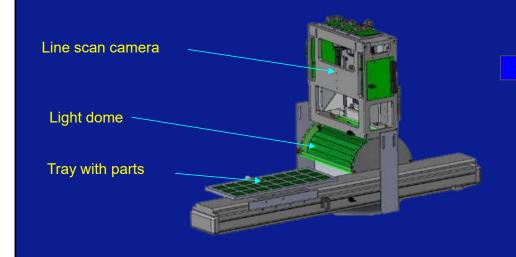
QFN – damaged pad

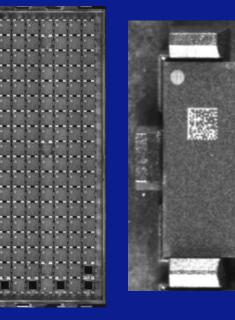
²⁴ **2023**

Thermal and Mechanical Challenges for Test Handlers

TestConX Workshop

www.testconx.org


March 5-8, 2023


TestConX 2023

Thermal

Vision system (Tray level)

- Tray level line scans:
 - Empty pocket detection
 - 2DID for sort/binning
 - Part orientation using pin 1

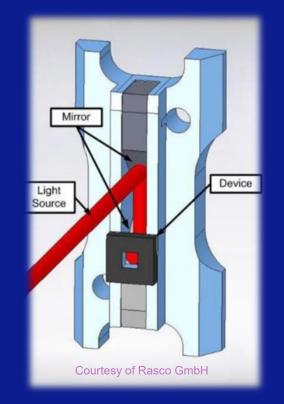
Thermal and Mechanical Challenges for Test Handlers

TestConX 2023

Microelectromechanical systems (MEMS)

- Testing requires physical stimulus
- Cost of test up to 50% of device cost
- Market drivers:
 - Lower cost over time
 - Higher functionality (i.e., complexity) over time
- Stimulus mechanism temperature range (-55 °C to 160 °C)

Thermal and Mechanical Challenges for Test Handlers



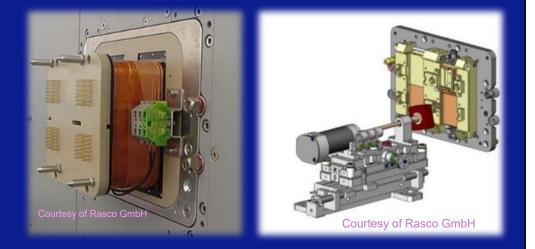
Thermal

TestConX 2023

MEMS (Optical sensors)

- Geometric accuracy
 - Positioning accuracy
 - -Precision mirrors
- Intensity control
- Light source needs to be thermally isolated from temperature conditioned device

Thermal and Mechanical Challenges for Test Handlers

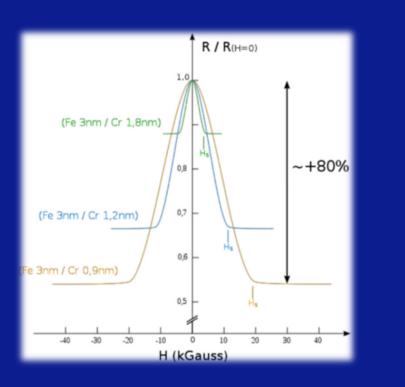


Thermal

TestConX 2023

MEMS (Hall sensors)

- Measurement of magnetic flux density
- Moving a device into magnetic field of a coil
 - Change magnetic field intensity
- Moving a device into magnetic field of a permanent magnet
 - Change orientation of magnetic field (rotate magnet)


Thermal and Mechanical Challenges for Test Handlers

TestConX 2023

MEMS (GMR)

- GMR giant magnetoresistance
- Resistance dependent on magnetic field
- For test
 - Change of the magnetic field in the contactor
 - Measurement of magnetic field intensity

Thermal and Mechanical Challenges for Test Handlers

TestConX 2023

MEMS (Pressure transducers)

- From millibars (absolute) to 10 bar
 - Vacuum/pressure in single test
- Multiple pressure levels

 Minimum stabilization time
- Live or dead bug access
- Seal to device
- Minimal air consumption
- High accuracy to set point
- Temperature/humidity control
- Low noise
- Radio RFX transmission (tire sensor)

<image>

tire sensor

Thermal and Mechanical Challenges for Test Handlers

ASIC + Sensors

www.testconx.org

Cap + Sensors

30 2022

Thermal

TestConX 2023

MEMS (Acoustic sensors)

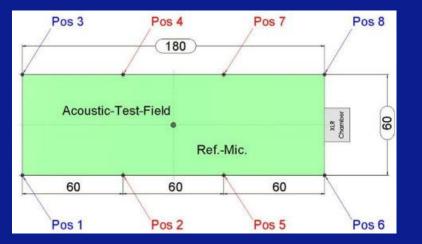
- Frequency response
 - 50Hz. to 20kHz.
 - 100Hz. ← → 3.4m wavelength
- Sound pressure level
- Sensitivity
- Distortion
- Signal to noise ratio
- Isolation from ambient noise (handler!)
- Live and dead bug configurations

Thermal and Mechanical Challenges for Test Handlers

www.testconx.org

acoustic

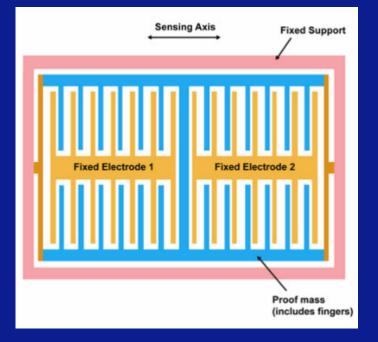
chambe


Thermal

TestConX 2023

MEMS (Acoustic sensors)

Stimulus uniformity over parallel test sites

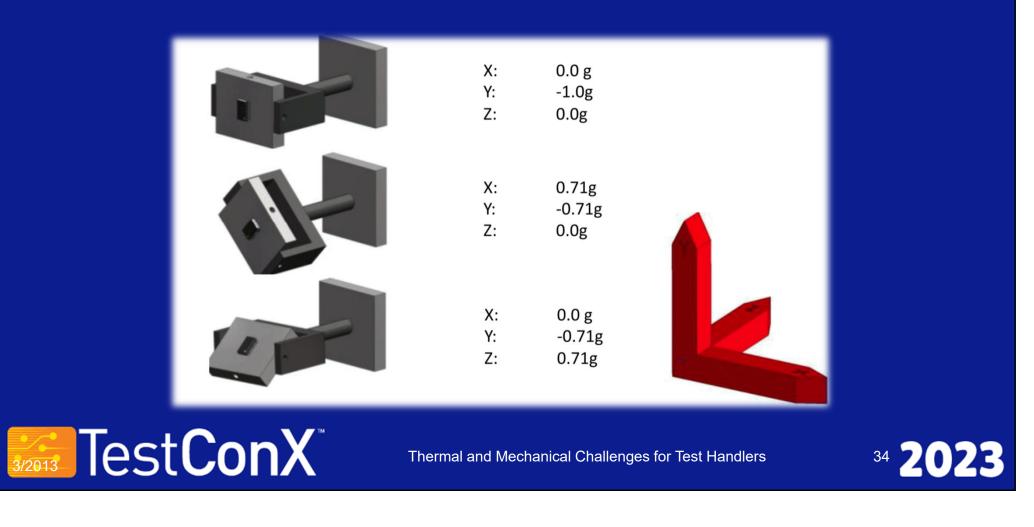

Thermal and Mechanical Challenges for Test Handlers

TestConX 2023

MEMS (Low g/gyro)

- Static test
 - Measure low g by aligning to gravity
 - Can measure multiple axes
 - Any strain exerted on device can affect output!
- Dynamic test
 - Values of g > 1
 - Gyro performance
- Connectivity to devices complex
- BIST available but requires more device area (higher cost)
 - Tradeoff: cost of test vs. extra area

https://www.siliconsensing.com/technology/mems-accelerometers/


Thermal and Mechanical Challenges for Test Handlers

TestConX 2023

Thermal

MEMS (Low g/gyro – static test)

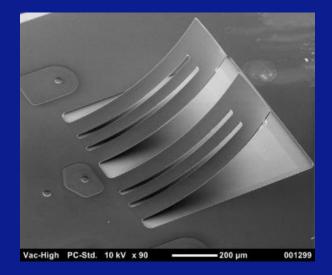
Thermal

TestConX 2023

MEMS (Multifunction)

- Inertial measurement units (IMUs)
 Tri-axis, digital accelerometer
 - Tri-axis, digital gyroscope
 - Tri-axis, digital magnetometer
 - Digital pressure sensor

Thermal and Mechanical Challenges for Test Handlers



Thermal

TestConX 2023

MEMS (Viscosity sensor)

- Bio-sensor, measures blood viscosity
- Not practical to test with fluids!

Thermal and Mechanical Challenges for Test Handlers

www.testconx.org

March 5-8, 2023

TestConX 2023

Thermal

Conclusion

- Devices will continue to get more difficult to test
- Must continue to innovate and keep up with technology
- Must avoid being the bottleneck to progress!!

Thermal and Mechanical Challenges for Test Handlers

