TWENTY-FOURTH ANNUAL

<u>tentve</u>

ConX

DoubleTree by Hilton Mesa, Arizona March 5-8, 2023

With Thanks to Our Sponsors!

With Thanks to Our Sponsors!

COPYRIGHT NOTICE

The presentation(s) / poster(s) in this publication comprise the Proceedings of the TestConX 2023 workshop. The content reflects the opinion of the authors and their respective companies. They are reproduced here as they were presented at the TestConX 2023 workshop. This version of the presentation or poster may differ from the version that was distributed at or prior to the TestConX 2023 workshop.

The inclusion of the presentations/posters in this publication does not constitute an endorsement by TestConX or the workshop's sponsors. There is NO copyright protection claimed on the presentation/poster content by TestConX. However, each presentation / poster is the work of the authors and their respective companies: as such, it is strongly encouraged that any use reflect proper acknowledgement to the appropriate source. Any questions regarding the use of any materials presented should be directed to the author(s) or their companies.

"TestConX", the TestConX logo, and the TestConX China logo are trademarks of TestConX. All rights reserved.

TestConX 2023

Materials

Critical Properties for Selecting Plastic Materials

Scott Williams Port Plastics

Mesa, Arizona • March 5–8, 2023

Providing Neutral Plastics Expertise to the SEMI Industry

TestConX Workshop

www.testconx.org

March 5-8, 2023

TestConX 2023

Materials

Purpose of the Presentation

From a materials science perspective, define the data sheet properties critical to optimizing material selection based on the specific applications requirements. Offer theories for each property as to the impact on the test socket application.

Critical Properties for Selecting Plastic Materials

Materials

TestConX 2023

Contents

- 1. Relevant Trends Effecting Plastics Selection
- 2. The Challenge for Polymer Developers for the Test Industry
- 3. Properties Critical to Micro Machinability
- 4. Properties Critical to Stable Applications
- 5. Summary

Critical Properties for Selecting Plastic Materials

TestConX 2023

Materials

Materials

TestConX 2023

Let's Start With a Typical Data Sheet

- A typical property datasheet for an engineering thermoplastic resin product contains an extensive list of properties tested since a myriad of industries specify high end materials for machining
 - Oil & Gas
 - Medical
 - Food Processing
 - Aerospace
 - Rail
 - Semiconductor...
- It becomes necessary to identify the relevant data markers associated with each specific industry
- For the purpose of this paper, we will focus on identifying relevant Thermal, Physical & Mechanical properties for test applications however foregoing Electrical Properties

Physical Properties	Metric	English	Comme
Specific Gravity	1.27 g/cc	1.27 g/cc	ASTM D
Nater Absorption	0.25 %	0.25 %	ASTM D
Notor Absorption at Caturation	1 25 %	@TIME 24.0 Hour	ASTMD
vater Absorption at Saturation	@Temperature 23.0 °C	@Temperature 73.4 *F	ASTMD
inear Mold Shrinkage, Flow	0.0050 - 0.0070 cm/cm	0.0050 - 0.0070 in/in	SABIC Met
Melt Flow	9.0 g/10 min	9.0 g/10 min	ASTM D 1
	@Load 6.60 kg, Temperature 337 °C	@Load 14.6 lb, Temperature 639 °F	
Mechanical Properties	Metric	English	Comme
lardness. Rockwell M	109	109	ASTMD
ensile Strength Yield	110 MPa	16000 psi	Type L 5 mm/min: ASTM D
longation at Break	60 %	60 %	Type I, 5 mm/min: ASTM D
Iongation at Vield	7.0 %	7.0%	Type I, 5 mm/min; ASTM D
ensile Modulus	3.58 GPa	519 ksi	5 mm/min: ASTM D
lexural Yield Strength	165 MPa	23900 psi	2.6 mm/min_100 mm span; ASTM D
lexural Modulus	3.51 GPa	509 ksi	2.6 mm/min, 100 mm span; ASTM D
loissons Ratio	0.36	0.36	ASTM F
rod Impact Notched	0.530 Ucm	0.993 #Jb/in	ASTMD
	@Temperature 23.0 °C	@Temperature 73.4 *F	AGTIND
	13.35 J/cm @Thickness 3.20 mm	25.01 ft-lb/in @Thickness 0.126 in	Reverse Notched; ASTM D
zod Impact, Unnotched	13.35 J/cm @Temperature 23.0 °C	25.01 ft-lb/in @Temperature 73.4 *F	ASTM D 4
Sardner Impact	36.0 J	26.6 ft-lb	ASTM D 3
aber Abrasion, mg/1000 Cycles	@Temperature 23.0 °C 10	@Temperature 73.4 *F 10	CS-17; ASTM D 1
	@Load 1.00 kg	@Load 2.20 lb	
Electrical Properties	Metric	English	Comme
olume Resistivity	1.00e+17 ohm-cm	1.00e+17 ohm-cm	ASTM D
ielectric Constant 📶	3.15 @Frequency 100 Hz	3.15 @Frequency 100 Hz	ASTM D
	3.15 @Erequency 1000 Hz	3.15 @Erequency 1000 Hz	ASTM D
Dielectric Strength 🌆	19.6 kV/mm	498 kV/in	in oil; ASTM D
	@Thickness 3.20 mm 27.9 kV/mm	@Thickness 0.126 in 709 kV/in	in oil: ASTM D
	@Thickness 1.60 mm	@Thickness 0.0630 in	
	@Thickness 1.60 mm	@Thickness 0.0630 in	in air; ASTM D
Dissipation Factor 🏨	0.0012 @Frequency 1000 Hz	0.0012 @Frequency 1000 Hz	ASTM D
	0.0015 @Frequency 100 Hz	0.0015 @Frequency 100 Hz	ASTM D
	0.0025	0.0025	ASTM D
rc Resistance	120 - 180 sec	120 - 180 sec	PLC 5: ASTM D
Comparative Tracking Index	100 - 175 V	100 - 175 \/	
Act Wire Ignition HM/I	60 - 120 500	60 - 120 500	PLC 4, 02 7
lich Amp Arc Ignition, HAI	15 20 sec	15 20 orea	PLC 1, 0L 7
High Voltage Arc-Tracking Rate HVTR	25.4 - 80.0 mm/min	1 00 - 3 15 in/min	PLC 3, 02 7
Thermal Drementies	20.4 - 00.0 minimi	English	102,027
nermai Properties	Metric	English	Comme
CTE, linear, Parallel to Flow	55.8 µm/m-°C @Temperature -20.0 - 150 °C	31.0 µin/in-°F @Temperature -4.00 - 302 °F	ASTM E 8
CTE, linear, Transverse to Flow	54.0 µm/m-*C	30.0 µin/in-*F	ASTM E 8
Thermal Conductivity	0.220 W/m-K	1.53 BTU-in/hr-ft²-°F	ASTM C 1
Deflection Temperature at 0.46 MPa (66 psi)	210 °C	410 °F	unannealed; ASTM D 6
Deflection Temperature at 1.8 MPa (264 ppi)	@Thickness 6.40 mm	@Thickness 0.252 in 304 °E	unanneologi ACTM D.6
Senetition reinperature at 1.0 MP a (204 pSI)	@Thickness 6.40 mm	@Thickness 0.252 in	unannealed, ASTM D 6
/icat Softening Point	218 °C	424 °F	Rate B/50; ASTM D 15
Glass Transition Temp, Tg	217 °C	423 °F	
JL RTI, Electrical	170 °C	338 °F	UL 74
JL RTI, Mechanical with Impact	170 °C	338 °F	UL 74
JL RTI, Mechanical without Impact	170 °C	338 °F	UL 74
Flammability, UL94 🌆	W-2	W-2	UL
	V-0	V-0	UL
	@Thickness 0.750 mm	@Thickness 0.0295 in	
	EUX	5074	

Critical Properties for Selecting Plastic Materials

Materials

Industry Trends Effecting Plastic Selection in Test Applications

	Wafer Size	Node Size	Interesting Tidbits
1960s	• 13 mm in 1960 • 25 mm in 1964		 Moore's Law in 1965, the number of components per IC double each yr 600 transistors in 100 Bit chip
1970s	• 30 mm in 1970 • 125 mm in 1979	10 μm – 1971 3 μm - 1975	• 2300 transistors in 1971 • 29,000 transistors in 1979
1980s	• 150 mm in 1981	1 μm – 1985 800nm - 1989	• 134,000 transistors in 1981 • 275,000 transistors in 1985
1990s	• 300 mm in 1996	600nm – 1994 250nm - 1998	 1993 3.1 Million transistors – Pentium 1999 29 Million transistors – Pentium III
2000s	• No Change	180nm – 2000 90nm – 2003 45nm – 2007	• 2005 169 Million transistors – Pentium 4 • 2009 800 Million transistors!!! – Core II Duo
2010-	•300mm still!	32nm – 2010 22nm – 2011	The beginning of nanoelectronics Use of hi-k metals means no conventional
2023		14nm - 2015 10nm - 2017 7nm - 2019 5nm - 2020 3nm - 2022	 Implementation of 5G in 2019 TSMC leads the way with 3 nano chip technology

Year	Node Size			Hole Size	Material Stiffness
2000	130 nm			0.8 mm	420,000
2003	90 nm			0.6 mm	500,000
2006	65 nm			0.4 mm	600,000
2009	45 nm			0.25 mm	980,000
2012	28 nm			0.18 mm	1,000,000
2015	14 nm			0.1 mm	1,250,000
2019	7 nm			0.08 mm	1,400,000
2023	5 nm	4	ל	??	Next Generation?

Miniaturization Plays a Major Role in the Design of Burn In & Test Applications

TestConX -

Critical Properties for Selecting Plastic Materials

Materials

Materials

The Balance Between the Two Top Level Critical Parameters

Micro-Machinability

- Defined as the ability to successfully machine features that:
 - Are aggressive in their micro size and repetition
 - Require precision placement at tolerances seemingly impossible for plastics
 - That require clean features such as burrfree micro holes

Test**ConX**®

Stability of the Finished Application

- Defined as the realization of a finished application that will best hold its dimensional stability over a wide range of test parameters such as:
 - Resistance to flexing under load given
 - Resistance to growth over a wide temperature range
 - Resistance to growth due to excessive moisture absorption

Key Point - Traditionally the Rheological Development of Materials to Achieve Increased Dimensional Stability Results in Materials That Are More Difficult to Micro-Machine

Let's look at the properties that influence each parameter

Critical Properties for Selecting Plastic Materials

www.testconx.org

⁸ 2023

MCAM Kyron® GC-100

0.08 mm hole size

Materials

TestConX 2023

- When an amorphous polymer is heated, the temp at which the polymer structure turns to "a rubbery state" is called the Glass Transition Temp. ~PAI Torlon – Ultem PEI~
- Melt Temperature is defined as the temperature of which a crystalline material falls out of its crystalline structure and becomes a liquid phase.
 ~ PEEK – Polyimide ~

As it Relates to Micro-Machinability in Test Sockets

- Micro hole drilling involves high speeds & extremely small drill bits that generate a high level of surface frictional heat
- The higher the thermal resistance of a material the cleaner the hole upon exit of the drill bit
- Techniques that can improve the burring condition

Polymer HDT Temp Τg ٥F MP 264 psi Standard Polyimide 900+ Melt 600 Ensinger TECAPEEK® CMF 643 572 Melt MCAM Kyron® 2204 649 549 Melt Torlon PAI 527 532 Τg Torlon 30% GF 527 520 Τg MCAM Semitron® MP-370 649 Melt 500 MCAM Kyron[®] GC 100 649 Melt 445 MCAM Semitron[®] MDS-100 600 Melt 410 PEI (Ultem) + Glass 410 410 Τg 400 Ultem 1000 (PEI) 410 Τg GP PEEK 649 320 Melt

Critical Properties for Selecting Plastic Materials

Session 8 Presentation 2

Materials

Micro-Machinability Critical Property # TWO - Tensile Elongation

- Tensile Elongation at Break (ASTM D412) is a measure of a materials ductility expressed in percent stretch before break. Low ductility refers to a brittle material while high ductility equates to a material that is generally stretchable
- Testing on the capability to *Place Holes With Accuracy* show that the lower the ductility or the more brittle the material, the better the material for precision hole placement

Materials

Micro-Machinability Critical Property	y # THREE - Fil	led Mater	ials	
Fiber fillers have long been used in plast	ics to enhance		Virgin Resin	30% Glass Filled
mechanical strength properties such as	Flexural Modulus	PEEK	600,000 psi	900,000 psi
		Torlon PAI	600,000 psi	980,000 psi
Carbon Fiber Filled – expensive, reduce	weight, strength	Ultem PEI	500,000 psi	850,000 psi
Glass Fiber Filled – low cost method to in	ncrease strength		Flexural Modulus of	f Elasticity @ 73°F
they exhibit conductive properties Glass Fiber filled materials are used for lo precision micro hole machining	wer cost high stre	ength applic	ations that do	o not require
Ceramic micro-powders are used in virgin	resins such			
as PEEK to add stiffness & dimensional s	tability to resin	Virgin PEEK	Standard Ceramic Filled PEEK	Semitron GC-100 CF PEEK
matrix with much better micro-machinabi	Flexural Modulus	600,000 psi	783,000 psi	1,100,000 psi
than glass filled materials	CTE	2.6	2.0	1.9
	Tensile Elongation	40%	3%	3%
Test ConX	Critical Properties for Selectin	g Plastic Materials		¹¹ 2023

TestConX 2023

Materials

Stable Application Critical Property Number ONE - Flexural Modulus

- Flexural Modulus of Elasticity (ASTM D790) is a measure of a materials ability to resist bending or the materials stiffness.
- Specifically it is a measurement of stress to corresponding strain, expressed in PSI

Relevance to Test Applications

- Driven by increasing hole counts in array patterns, decreasing pitch sizes & decreasing material between holes coupled with decreasing cross sections
- ~75%+ of the material can be machined away with cross sections in the 1mm range, the higher the Flexural Modulus, the more likely the material will maintain stiffness in use

Materials

Stable Application Critical Property Number TWO - Moisture	Absorptior	
		Moisture
 Moisture Absorption in plastics (ASTM D570) measures the weight 		24 hours
		ASTM D570
gain of a plastic specimen at 23°C at 24 hours and to saturation	Semitron [®] MDS-100	0.1
	TECAPEEK [®] LP TV20	0.08
The relevance to test applications is the isotropic growth of the	Kyron [®] GC-100	0.09
The relevance to test applications is the isotropic growth of the	PAI 30% GF	0.3
application after machining due to exposure to humidity	Vespel [®] SCP -5000	0.1
	TECAPEEK [®] CMF	0.06
	Kyron [®] 2204	0.37
So what do we know about Moisture Absorption & Plastics?	PEEK natural	0.1
	Semitron [®] MP370	0.1
	Torlon 4203	0.4
Two mechanisms a plastic material will absorb & maintain moisture:	Ultem 1000	0.25
	Vespel [®] SP-1	0.24
 1)Micro porosity – nano sized pockets in the plastic that has the ability water exists within a free state. Represents more than 90% of the mois 2)Immobilized Moisture – water molecules have a tendency to form hyd chemically react with the polymer making a non free state. 	to absorb mois sture in a typic rogen bonds, v	sture, the al polymer. water may
The rate of moisture absorption can be accelerated by increasing the te capacity at saturation will not change significantly TestConX [™] Critical Properties for Selecting Plastic Materials	mperature, ho	wever the 3 202 3

Materials

TestConX 2023

Practical Thoughts About Moisture Absorption

- The high end materials are often annealed after processing to • reduce stress levels, resulting in a dry starting point
- The imidized materials (Torlon PAI & Polyimides) are post • cured at extreme temps for extended time
- An artificially dry moisture materials are highly motivated to • reach equilibrium within the environment they are in
- Materials reach equilibrium within the environment they are in • which is between dry and saturation, equilibrium is desired to minimize growth
- Water immersion = 2X absorption rate vs. ambient air (23°C, 50%RH)
- Temps over 100°C are required to • drive water out of the material

	Water (Saturation in QC Lab)			Ambient Air (Tech Center)					Saturation	Air	
	Ring 1	Ring 2	Ring 3	Ring 4	Ring 5	Ring 6	Ring 7	Ring 8		Average	Average
Week 1 Difference	0.0030	0.0016	0.0026	0.0029	0.0042	0.0035	0.0029	0.0024		0.0025	0.0033
Week 2 Difference	0.0055	0.0039	0.0057	0.0043	0.0037	0.0031	0.0033	0.0032		0.0049	0.0033
Week 3 Difference	0.0061	0.0037	0.0057	0.0049	0.0037	0.0045	0.0039	0.0035		0.0051	0.0039
Week 4 Difference	0.0053	0.0032	0.0069	0.0054	0.0058	0.0070	0.0052	0.0050		0.0052	0.0058
Week 5 Difference	0.0068	0.0051	0.0091	0.0064	0.0048	0.0047	0.0038	0.0056		0.0068	0.0047
Week 6 Difference	0.0081	0.0059	0.0088	0.0067	0.0048	0.0047	0.0043	0.0058		0.0074	0.0049
Week 7 Difference	0.0082	0.0060	0.0092	0.0069	0.0063	0.0055	0.0050	0.0058		0.0076	0.0056
Week 8 Difference	0.0095	0.0065	0.0092	0.0083	0.0056	0.0085	0.0063	0.0053		0.0084	0.0064
Week 10 Difference	0.0096	0.0076	0.0094	0.0089	0.0041	0.0077	0.0046	0.0044		0.0089	0.0052
Week 12 Difference	0.0115	0.0090			0.0067	0.0055				0.0102	0.0061
Week 14 Difference	0.0136	0.0106			0.0046	0.0051				0.0121	0.0049
Week 16 Difference	0.0129	0.0110			0.0049	0.0060				0.0119	0.0055
itical Properti	es for S	Selectin	ig Plast	ic Mate	erials				14	20	27

TestConX Workshop

www.testconx.org

С

Materials

TestConX 2023

Stable Application Critical Property Number THREE - CTE

- Coefficient of Thermal Expansion (CTE) is the measure of the change in length or volume per unit rise in temperature
- Coefficient of Linear Thermal Expansion (CLTE) is the measure of change in length per unit rise in temperature
- Plastic materials have their own unique Coefficient of Linear Thermal Expansion " α " ~ $\Delta L = L_0 \bullet \alpha \bullet (T_1 T_0)$
- For Engineering Thermoplastics -30°F to 300°F (-30°C to 149°C) is a common range for testing, CLTE measured by in./in./°F.
- Isotropic plastics such as amorphous plastics expand equally in all directions (X, Y & Z) when applied to thermal energy.
- The volumetric expansion coefficient (X,Y & Z) is approx. 3X the linear expansion coefficient

Critical Properties for Selecting Plastic Materials

www.testconx.org

2023

Materials

The Relevance of CTE to Test Socket Applications

- Test Applications subjected to testing over a wide temperature range of can have a significant impact of placement of the holes
- For unsecured applications, growth is generally from the middle of the part out in all directions (X,Y and Z).
- Finished socket growth can be impacted from both CTE & Moisture absorption and thus need to be considered

CTE
(X 10^-5)
ASTM D831
1.1
1.9
1.9
0.9
2.6
3.1
2
2.6
2.5
1.7
3.1
3.05

¹⁶ **2023**

TestConX 2023

Materials

