TWENTY-FOURTH ANNUAL

<u>tentve</u>

ConX

DoubleTree by Hilton Mesa, Arizona March 5-8, 2023

With Thanks to Our Sponsors!

With Thanks to Our Sponsors!

COPYRIGHT NOTICE

The presentation(s) / poster(s) in this publication comprise the Proceedings of the TestConX 2023 workshop. The content reflects the opinion of the authors and their respective companies. They are reproduced here as they were presented at the TestConX 2023 workshop. This version of the presentation or poster may differ from the version that was distributed at or prior to the TestConX 2023 workshop.

The inclusion of the presentations/posters in this publication does not constitute an endorsement by TestConX or the workshop's sponsors. There is NO copyright protection claimed on the presentation/poster content by TestConX. However, each presentation / poster is the work of the authors and their respective companies: as such, it is strongly encouraged that any use reflect proper acknowledgement to the appropriate source. Any questions regarding the use of any materials presented should be directed to the author(s) or their companies.

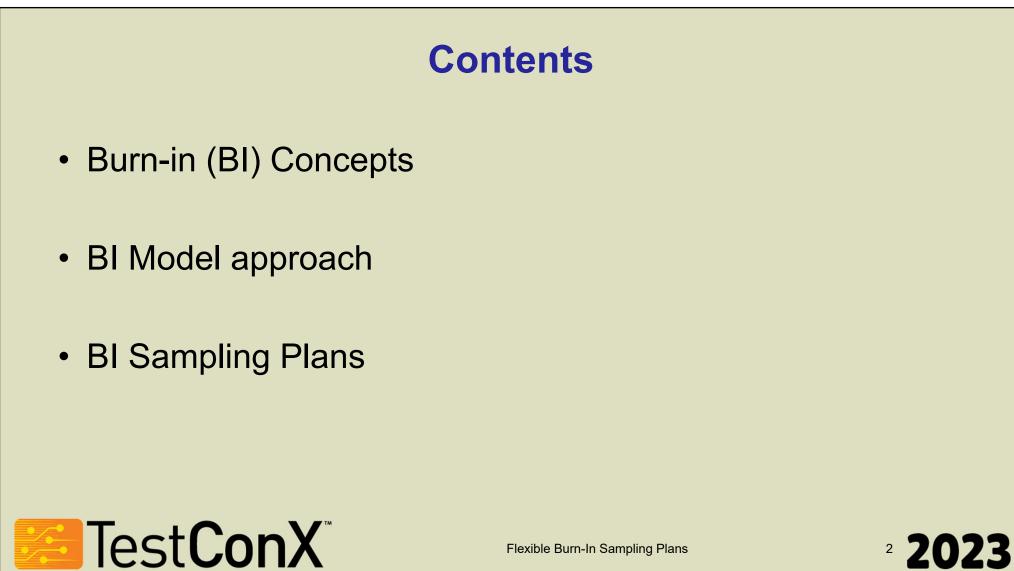
"TestConX", the TestConX logo, and the TestConX China logo are trademarks of TestConX. All rights reserved.

Operations 2

Flexible Burn-In Sampling Plans

Horst Lewitschnig Infineon Technologies Austria AG

Mesa, Arizona • March 5-8, 2023


TestConX Workshop

www.testconx.org

March 5-8, 2023

TestConX 2023

Operations 2

TestConX 2023

Operations 2

BI Concepts

- Two major tools in QM
 - 100 % control
 - Sampling
- At BI
 - 100 % BI
 - Typically, BI time reductions
 - BI studies
 - Random sample to BI
 - As long as the random sample is not fully assessed → 100 % BI of the rest of the population
 - Once BI study is pass → BI monitoring

Flexible Burn-In Sampling Plans

www.testconx.org

³ 2023

Operations 2

BI Model Approach

• Limited failure population lifetime model

$$\pi_{(t,\infty)} = P(T_{ef} > t) \cdot \pi$$

with

TestConX 2023

- π : probability of failures in the overall population
- $P(T_{ef} > t) = 1 P(T_{ef} < t)$: probability of early failures after time t
 - \rightarrow knowledge about lifetime distribution of early failures is needed.
 - E.g., $T_{ef} \sim Weibull(3,0.5)$ (ReliaSoft).

Flexible Burn-In Sampling Plans

www.testconx.org

⁴ **2023**

TestConX 2023

Operations 2

Data Structure

• Interval censored data:

- $n_t = (n_{t_1}, ..., n_{t_m})$: vector of stressed devices at each BI time interval $(t_{j-1}, t_j]$, j=1,...,m;
- $x_t = (x_{t_1}, ..., x_{t_m})$: vector of BI failures at each BI time interval $(t_{j-1}, t_j], j=1, ..., m$; - $S(x_t, n_t)$: data from a BI study.
- Test**ConX**®

Flexible Burn-In Sampling Plans

www.testconx.org

5 ZOZ3

TestConX 2023

Operations 2

Estimation of Early Failure Probability

1. Calculate the likelihood function of π based on the data set

 $S = S(x_t, n_t).$

- 2. Assign a prior distribution to π ensuring compliance with the Clopper-Pearson estimator.
- 3. Determine the posterior distribution of $\hat{\pi}$ and calculate its (1α) -quantile.

Flexible Burn-In Sampling Plans

www.testconx.org

⁶ 2023

TestConX 2023

Operations 2

Likelihood Function

- 1. Calculate the likelihood function of π based on the data set $S = S(x_t, n_t)$.
 - $n_{t_{j+1}}$ devices in the interval $(t_j, t_{j+1}]$ are a subset of the n_{t_j} devices in the interval $(t_{j-1}, t_j], j = r + 1, ..., m 1$.
 - \rightarrow devices are not stochastically independent.
 - \rightarrow Likelihood function as product of conditional probabilities:

$$\begin{aligned} \mathcal{L}(\pi, \mathbf{S}) &= \prod_{j=r+1}^{m} MN\left(\left(\left(x_{t_{j}}, n_{t_{j}} - x_{t_{j}} \right)^{T}; n_{t_{j}}; \left(\pi_{(t_{j-1}, t_{j}]}, 1 - \pi_{(t_{j-1}, t_{j}]} \right)^{T} | x_{t_{r}}, \dots, x_{t_{j-1}} = 0 \end{aligned} \right). \end{aligned}$$

Flexible Burn-In Sampling Plans

www.testconx.org

2023

TestConX 2023

Operations 2

Likelihood Function

- 2. Assign a prior distribution to π ensuring compliance with the Clopper-Pearson estimator.
 - We set $\pi_{(t_r,t_m]} \sim Be(1,0)$, $f(\pi_{(t_r,t_m]}) \propto \frac{1}{1 - \pi_{(t_r,t_m]}}$.
 - Needed: prior distribution function for π :

$$\pi_{(t_r,t_m]} = P(t_r < T_{ef} \le t_r) \cdot \pi.$$

- Utilizing the change of variable theorem

$$f(\pi) \propto \frac{P(t_r < T_{ef} \le t_r)}{1 - P(t_r < T_{ef} \le t_r) \cdot \pi}.$$

Test**ConX**

Flexible Burn-In Sampling Plans

⁸ 2023

TestConX 2023

Operations 2

Posterior Distribution

- 3. Determine the posterior distribution of $\hat{\pi}$ and calculate its (1α) -quantile.
 - The posterior density $f(\pi|S)$ is calculated via Bayes' rule.
 - Devices in the interval $(t_j, t_{j+1}]$ are a subset of the n_{t_j} devices in the interval $(t_{j-1}, t_j]$, j = r + 1, ..., m 1.
 - \rightarrow devices are not stochastically independent.
 - \rightarrow Likelihood function as product of conditional probabilities:

$$f(\pi|\boldsymbol{\mathcal{S}}) = \frac{\mathcal{L}(\pi;\boldsymbol{\mathcal{S}}) \cdot f(\pi)}{\int_0^1 \mathcal{L}(\pi;\boldsymbol{\mathcal{S}}) \cdot f(\pi) \cdot \pi}.$$

Flexible Burn-In Sampling Plans

www.testconx.org

⁹ 20

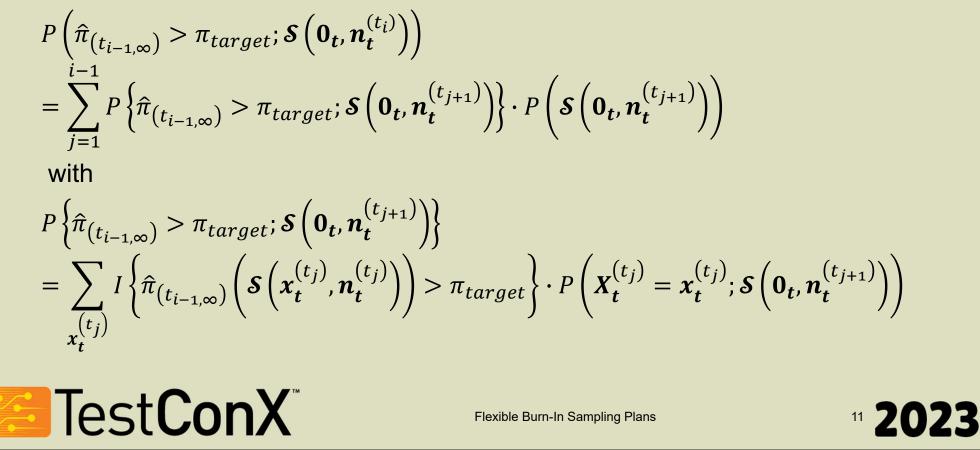
TestConX 2023

Operations 2

BI Sampling Plans

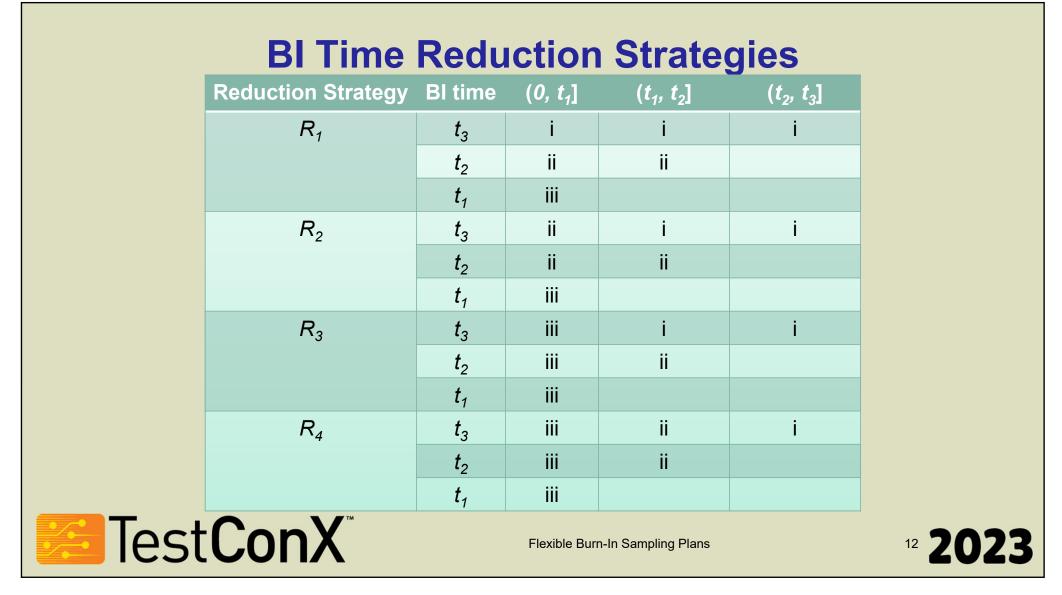
- $n_t^{(t_i)} = \left(n_{t_1}^{(t_i)}, \dots, n_{t_m}^{(t_i)}\right)$: vector of required numbers of passed devices after each readout time t_i in order to reduce the BI time from t_i to t_{i-1} .
- $x_t^{(t_i)} = (x_{t_1}^{(t_i)}, ..., x_{t_m}^{(t_i)})$: vector of possible failures in each interval $(t_{j-1}, t_j]$ before the BI time is reduced from t_j to t_{j-1} .
- $n_{t_1}^b$: planned number of devices that are put to BI for a batch with BI time t_i .
- Find vectors, such that

$$\left\{ \hat{\pi}_{(t_{i-1,\infty})} \left(\mathcal{S} \left(\mathbf{0}_{t}, \mathbf{n}_{t}^{(t_{i})} \right) \right) \leq \pi_{target} \right\} \text{ AND } \left\{ P \left(\hat{\pi}_{(t_{i-1,\infty})} > \pi_{target}; \mathcal{S} \left(\mathbf{0}_{t}, \mathbf{n}_{t}^{(t_{i})} \right) \right) \leq \gamma \right\}$$


$$TestConX^{T}$$
Flexible Burn-In Sampling Plans 10 202

TestConX 2023

Operations 2


Delaying Factor

Probability to increase the BI time after a BI time reduction

TestConX 2023

Operations 2

Operations 2

TestConX 2023

BI Time Reduction Strategy - Example

- Reduction Strategy R_1
 - Acceptance criterion: 0 failures.
 - Reduction to t_2 : the intervals $(t_0, t_1]$, $(t_1, t_2]$, and $(t_2, t_3]$ are analyzed.
 - Reduction to t_1 : the intervals $(t_0, t_1]$ and $(t_1, t_2]$ are analyzed.

$$i = 3$$

$$\left(\left(x_{t_1}^{(t_3)}, x_{t_2}^{(t_3)}, x_{t_3}^{(t_3)} \right), \left(n_{t_3}^b, n_{t_3}^b, n_{t_3}^b \right) \right) \qquad i = 3$$

$$\begin{pmatrix} x_{t} & , n_{t} \\ & & \end{pmatrix}^{-} \\ \begin{pmatrix} (x_{t_{1}}^{(t_{1})}, x_{t_{2}}^{(t_{2})}, 0), (n_{t_{2}}^{b} + n_{t_{3}}^{b}, n_{t_{2}}^{b} + n_{t_{3}}^{b}, n_{t_{3}}^{b}) \\ \begin{pmatrix} (x_{t_{1}}^{(t_{1})}, 0, 0), (n_{t_{1}}^{b} + n_{t_{2}}^{b} + n_{t_{3}}^{b}, n_{t_{2}}^{b} + n_{t_{3}}^{b}, n_{t_{3}}^{b}) \end{pmatrix} \qquad i = 1$$

Flexible Burn-In Sampling Plans

13

20

Operations 2

BI Time Reduction Strategy - Example • Reduction Strategy R_1 (cont.) $P\left(\boldsymbol{x}_{t}^{(t_{j})}, \boldsymbol{n}_{t}^{(t_{j})}\right)$ $= \begin{cases} NMN\left(\left(x_{t_{1}}^{(t_{3})}, x_{t_{2}}^{(t_{3})}, x_{t_{3}}^{(t_{3})}, n_{t_{3}}^{b} - \sum_{j=1}^{3} x_{t_{j}}^{(t_{3})}\right)^{\mathsf{T}}, n_{t_{3}}^{b}, \left(\hat{\pi}_{(0,t_{1}]}, \hat{\pi}_{(t_{1},t_{2}]}, \hat{\pi}_{(t_{2},t_{3}]}, 1 - \hat{\pi}_{(0,t_{3}]}\right)^{\mathsf{T}}\right) & i = 3 \\ \\ NMN\left(\left(x_{t_{1}}^{(t_{2})}, x_{t_{2}}^{(t_{2})}, n_{t_{2}}^{b} + n_{t_{3}}^{b} - \sum_{j=1}^{2} x_{t_{j}}^{(t_{2})}\right)^{\mathsf{T}}, n_{t_{2}}^{b} + n_{t_{3}}^{b}, \left(\hat{\pi}_{(0,t_{1}]}, \hat{\pi}_{(t_{1},t_{2}]}, 1 - \hat{\pi}_{(0,t_{2}]}\right)^{\mathsf{T}}\right) & i = 2 \\ \\ NB\left(x_{t_{1}}^{(t_{1})}, n_{t_{1}}^{b} + n_{t_{2}}^{b} + n_{t_{3}}^{b}, \hat{\pi}_{(0,t_{1}]}\right) & i = 1 \end{cases}$ Test**ConX** ¹⁴ **2023** Flexible Burn-In Sampling Plans

TestConX 2023

TestConX 2023

Operations 2

Case Study								
 Initial Sampling Plan 	Reduction Strategy	BI time	(0, 7 h]	(7 h, 19 h]	(19 h, 48 h]			
- Readout times: • $t_1 = 7 h$, • $t_2 = 19 h$, • $t_3 = 48 h$. - Quality target: • 25 ppm @ 90 % CL. - Delaying factor: • 10 %.	R ₁	48 h	0/13 k	0/13 k	0/13 k			
		19 h	0/36.4 k	0/36.4 k				
		7 h	0/110.3 k					
	R ₂	48 h	x/62.4 k	0/62.4 k	0/62.4 k			
		19 h	0/62.4 k	0/62.4 k				
		7 h	0/101.8 k					
	R ₃	48 h	x/69.3 k	0/69.3 k	0/69.3 k			
		19 h	x/207.4 k	0/207.4 k				
		7 h	0/207.4 k					
	R_4	48 h	x/211.2 k	x/211.2 k	0/211.2 k			
		19 h	x/211.2 k	0/211.2 k				
		7 h	0/211.2 k					
TestConX [™] Flexible Burn-In Sampling Plans 15 20								

Presentation 1 Session 6

TestConX 2023

Operations 2

Case Study

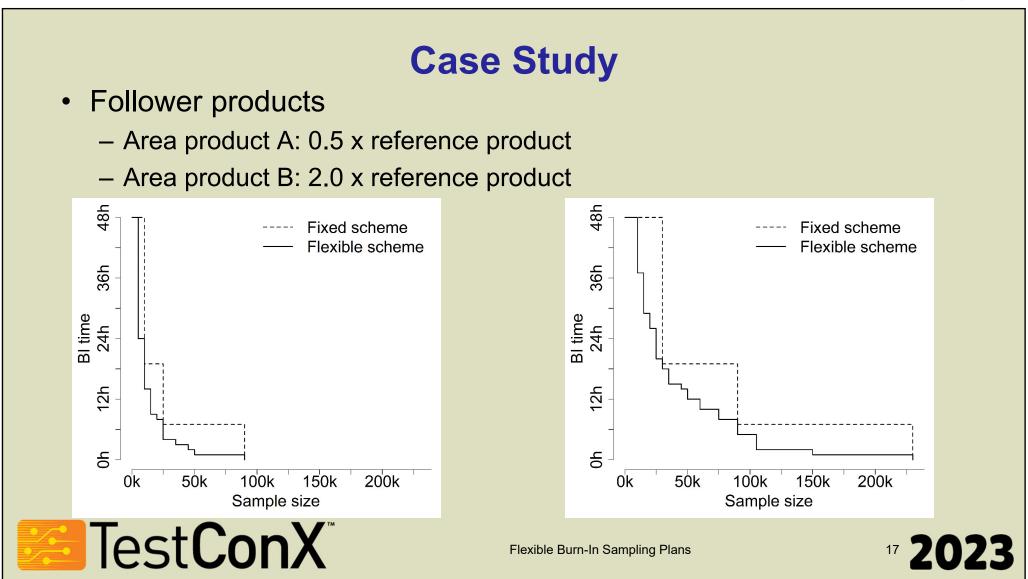
• Deviations at the 1st readout

Reduction Strategy	BI time	(0, 7 h]	(7 h, 19 h]	(19 h, 48 h]
R ₁	48 h	<mark>1-3</mark> /14 k	0/13.5 k	0/13 k

• Update of the sampling plan:

$$\begin{pmatrix} t, n_t^{(t_j)} \end{pmatrix} = \begin{cases} ((7 \ h, 19 \ h, 26 \ h), (110.8 \ k, 36.9 \ k, 13.5 \ k)) \text{ for } x_{t_1}^{(t_3)} = 1 \\ ((7 \ h, 19 \ h, 30 \ h), (110.6 \ k, 36.7 \ k, 13.3 \ k)) \text{ for } x_{t_1}^{(t_3)} = 2 \\ ((7 \ h, 19 \ h, 34 \ h), (110.5 \ k, 36.6 \ k, 13.2 \ k)) \text{ for } x_{t_1}^{(t_3)} = 3 \end{cases}$$

$$\textbf{TestConX}^{\text{Texple Burn-In Sampling Plans}}$$


Flexible Burn-In Sampling Plans

www.testconx.org

¹⁶ 2023

TestConX 2023

Operations 2

TestConX 2023

Operations 2

• Kurz, D, Lewitschnig, H, Pilz, J. Flexible time reduction method for burn-in of high-quality products. *Qual Reliab Eng Int*. 2021; 37: 2900– 2915.

Flexible Burn-In Sampling Plans

