TWENTY-FOURTH ANNUAL

<u>tentve</u>

ConX

DoubleTree by Hilton Mesa, Arizona March 5-8, 2023

With Thanks to Our Sponsors!

With Thanks to Our Sponsors!

COPYRIGHT NOTICE

The presentation(s) / poster(s) in this publication comprise the Proceedings of the TestConX 2023 workshop. The content reflects the opinion of the authors and their respective companies. They are reproduced here as they were presented at the TestConX 2023 workshop. This version of the presentation or poster may differ from the version that was distributed at or prior to the TestConX 2023 workshop.

The inclusion of the presentations/posters in this publication does not constitute an endorsement by TestConX or the workshop's sponsors. There is NO copyright protection claimed on the presentation/poster content by TestConX. However, each presentation / poster is the work of the authors and their respective companies: as such, it is strongly encouraged that any use reflect proper acknowledgement to the appropriate source. Any questions regarding the use of any materials presented should be directed to the author(s) or their companies.

"TestConX", the TestConX logo, and the TestConX China logo are trademarks of TestConX. All rights reserved.

www.testconx.org

Review of Polymer Materials Utilized in Test Socket Applications with a Comparison of Key Material Properties

Michael Tustin, Louis Lau, Nami Lohbeck, & Anton Schranner - Ensinger

Objective

Compare material properties for high performance test socket applications.

Activity

Analyze mainstream materials used in test socket applications and compare their properties

Comparisons

Advantages of various manufacturing methods Extrusion Compression molding Laminate pressing

Disadvantages of various manufacturing methods Extrusion Compression molding Laminate pressing

Variables

Specify resin properties Add a wide variety of fillers Control manufacturing process variables

Fest Socket Material Comparison					
Product	TECAPEI GF30 natural	TECAPE EK natural	TECAPE EK CMF white	TECAPAI CM XP530 black- green	TECAPE EK LP TV20 beige
Resin type	PEI with glass fiber	PEEK	PEEK with ceramic filler	PAI with glass fiber	PEEK with proprietar y filler
Tg DIN EN ISO 11357 (º C)	213	150 ^e	151 ^e	284	143 ^d
Flexural Modulus DIN EN ISO 178 (MPA)	5500	4200	5500	5900	8600
CLTE 23-100° C DIN EN ISO 113591- 1;2 (10 ⁻⁵ K ⁻¹)	3	5	5	3.2	3.5 ^c
Moisture Absorption-24 Hour DIN EN ISO 62 (%)	.04	.02	.02	.12	.08
Dielectric Constant 1 MHZ ASTM D 150	3.7 ^a	2.8 ^b	4.7	3.8	3.1
Elongation at Break DIN EN ISO 527-2 (%)	4	15	4	3.6	8.8
Process	extrusion	extrusion	extrusion	compressio n molding	laminate pressing

Notes:

^aTesting at 1 kHZ, injection molded sample
^bTest method DIN IEC 60250, 1 kHZ, injection molding data from public source
^cLess than 150° C testing
^dValues retrieved from raw material (films)
^eDIN EN ISO 11357 public source

Summary of Test Socket Material Trends

Material Characteristics to optimize

dimensional stability (flexural modulus, temperature resistance, water absorption)

wear resistance

dielectric properties

micro-machinability

Drilling 0.1 mm holes TECAPEEK LP TV20 beige

material properties must be balanced so that polymers are not brittle and also provide rigidity.

Extrusion process

□proven technology to manufacture polymer plates that is cost efficient.

Compression molding

more costly than extrusionoffers more uniform material properties

Laminate pressing

 extremely rigid products can be produced that also have excellent micro-machinability
 custom thicknesses can be produced that can create cost saving opportunities

Conclusion

>Test socket engineers should consider the material type and the manufacturing process when selecting the optimum material for a given application.

Polymer plate suppliers need to specify resin properties and consider fillers while also controlling process variables to optimize material properties.

Suppliers of polymer materials are a critical element in the supply chain of test sockets and can play an important role in the development of new materials.