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Outline

* Introduction to mm waves
 Material behavior

* Wavelength effects
— Resonances
— Transitions
— Propagation and loss

* Testing
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Objective

A brief look at mm-waves and their unique
characteristics is provided first to set the stage

* Material properties for high frequency operation are
briefly illuminated

* Once a basic understanding is developed, socket
design pitfalls will be addressed

* Why is there a “vs.” in the title ?
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Wavelength vs. Frequency Visualized

THE ELECTROMAGNETIC SPECTRUM
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Source: Luzzilice Luzia Planet Fragile Torus on Pinterest
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mm Waves

 What are “mm Waves"?
— electromagnetic signals with 10 to 1 mm wavelength
— 30 GHz - 300 GHz
— Also called EHF (extremely high frequency) or mmW / MMW

* Where are they used ?

— 5G and short range communications, loT
— automotive radar, security scanners
— Prior to 5G/automotive :
« Science / radio astronomy / medicine
 military fire-control radar
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mm Waves
Strengths

» Large data rates, video
* |nstant response (loT)
» Good resolution (radar)
* Immunity from interference (short range, directivity)
» Spectrum reuse (short range)

« Small antennas, antenna arrays

TestConX
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* Short range (gases, rain drops, humidity)

mm Waves
Weaknesses

* No propagation around obstacles
* Loss in traditional circuitry e.g. PCBs, interconnects

e Cost

TestConX
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mm Waves — what changes ?

« Lateral dimensions in sockets on the order of
significant fractions of wavelength

« Skin depth, roughness, ‘detours’ into contact, multiple

spheres
« Radiation into test environment
 Instrumentation accuracy, cost

« Simulation accuracy (component detail, simulation
setup, mesh size)

» Material properties often unknown
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Permittivity (dielectric constant) and Frequency
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Source: Wikimedia File: Dielectric responses.svg
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Permeability (response to magnetization) and Frequency

5 -

4 Observation:
4 — "

i Permeability approaches
5 Re ‘1’ as frequency

Increases since heavy

dipoles cannot respond
2 - fast enough to stimulus.

1= . Hence there is no impact
A to be expected on
Oﬂ'llllllllllllll|llll|llll|llllf millimeter wave
0 1 2 3 4 5 GHZG frequency operation.
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Wavelength vs. Frequency

*A=c/f  (c=3"10°m/s)
(in free space ~air)

ec=1/ \/( H*g)
(iIn matter)
e = permittivity
u= permeability
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Wavelength vs. Frequency vs. Dielectric Constant
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3A/2

Waves In a Box

Source: https://commons.wikimedia.org/w/index.php?curid=7115416
Badseed working on a raster by Brews_ohare - Own work
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Wavelength vs. Frequency Visualized
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Resonances in the transverse direction (so-called modes) occur at elevated frequencies
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Wavelength vs. Frequency Visualized

Length vs.
wavelength

GHz
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Resonances in the longitudinal direction (so-called modes) occur at elevated frequencies
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So what are the consequences of using short
wavelengths in a test socket environment ?

Resonances !

« Smooth transitions
nheeded
* More loss

TestConX s s 2023




Interr)al Pin Resonance Effects

S21 (f)

| | \:k [
n \
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f [GHZ] e | O 48
\ 46 | Note: While TDR shows
44 - the |
some changes, the true
Plunger touches only at top and 42 JES,
bottom, leading to resonances inside 40 +-SAUSE and Impact can be
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pins at elevated frequencies. ps oumoste
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Adjacent Pin Resonance Effects

qh

open 12 )
i 1

I

" gnd f =}L/4

: res
signl 100 GHz ~ 2mm/4 ~ 0.5mm in polyimide

Resonances in ungrounded or partially grounded pins can occur at
elevated frequencies
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Inadvertent Adjacent Pin Resonances

. . If not properly
configured parallel
conductors can
contribute to resonances

J
M mm = \\/\P

%-15 \ \/m
\[
-25 U

|| || - 0 10 20 30 40
f [GHz] GWN909

Insertion loss measured for 3
different displacements
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Adjacent Pin Resonance Effects

r” Cumm D
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Resonances in ungrounded or partially grounded pins can occur at elevated frequencies
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External Pin Resonance Effects

Ground (all green)

Ditierential signals Design has ‘floating’ or Design has controlled
otherwise not matched impedance pins near
impedance pins near signals (all yellow)
signals .

& Thickness = 1mm

Pitch =0.35mm
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Sdd11
[dB]

External Pin Resonance Effects

-10

yarnl S N (P AR

-30 / —unterminated \
-40

—terminated

0 20 40 60 2& 20 40 60 80 100
/ GHz
Design has ‘floating’ or Design has controlled
otherwise connected pins impedance pins near
near signals signals (all yellow)

In general: Resonances appear when wavelength drops below twice pin length, but length
here is only 1mm !!
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==L

External Pin Resonance Effects

Resonances in this case occur orthogonal to arrangement as indicated
and depend on pin configuration and socket boundaries
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Thickness = 1mm
Pitch =0.35mm

Diff
signals
(pink)

Open

contact
(blue) ,
Terminated
contacts

(yellow)
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Partially terminated pins

0 0
-0.5 Aﬁ 05
-1 1
-1.5 15 —1topopen
—topbotopen
-2 —topopen —topbotopen -2 openshort
-2.5 2.5 - —2openshort
-3 3 ——2openshort unterm
0 20 40 60 80 100 0 20 40 60 80

100

While a single open circuited contact may be ok (left),
insertion loss (S21) shows problems in the presence of only a
few improperly terminated contacts
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0.1 mm thick
0.65 mm pitch

TestConX

Ultra-thin interface

“It” can (and will) still
happen, just at higher
frequencies

HFSSDesignt 4,




Other resonance effects

Source: Wikimedia - File:Whispering gallery
modes sphere.png

Source: Wikimedia - File:St Paul's Cathedral
Whispering Gallery.jpg
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Eye Diagram in the Presence of Resonances

S21 (f)

50' ] ] ] ] ] ] ]
| |

E | |
] | |
-200 — —
_ _ no resonance resonance
Measured insertion loss S21
of a load board with a Noticeable degradation of load board eye
parasitic resonance diagram (6Gbps) from a 3 GHz resonance
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Wave propagation at mm waves

What other considerations must be applied for sending
mm-wave signals through PCBs and sockets?

TestConX
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RF current flow

With progressively increasing frequency the RF current penetrates the

Source: Wikimedia - File:Coax and Skin depth.png, CCO,
https://commons.wikimedia.org/w/index.php?curid=14208109
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Skin depth

Skin depth (um) [2p
2.5 0 = \w_ﬂ
2 _
1.5 +
)b
0.5 o \7(D —4d) o \mwD
0 |
0 50 100
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Effective Resistance as a Function of Frequency

0.1

G

0.01

0.001

R

pd

e

Cd

0.01

1 GHz 100

This illustrates the drastic change of
effective resistance due to the skin effect
(single piece contact, 3mm long).
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S21 [dB]

L

Insertion loss as a function of series

0
-0.02
-0.04
-0.06
-0.08

-0.1

resistance (Z0=50 Q)

.
.
\\

Cres [NOhms]

1000

~

y

However, for short contacts this is of little
consequence (example is for a typical one
piece contact).
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Surface Roughness lllustration

o [um] | 2s

2

LN
/\ ) :surface

MHz

0.5

0 ______

0 20 40 60 80 100
0.5 X [um]

lllustration of approximate paths for different frequency RF signals
additional path length here is only approximately 2% for small skin depth
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Coax Loss vs. Surface Roughness

XY Plot 5 HFSSDesignt 4.

dB
04+

06

-1 S S S S

tsurf=O0um

tsurf="tum’

tsurf="3um

0 um

34 36 38 40

30 32 CHz
Te St CO nX mm Waves vs. Test Sockets

Loss of a 100 mm long
coax as a function of
surface roughness
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Moving mm waves

» PCB transmission lines (short)

- Coax (semi-rigid preferred) (

Source: Wikimedia
File:Sound-waveguide-drain.jpg

* Waveguide

 Beam waveguide
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Moving mm waves across boundaries

Transition smoothness || \ | TDR
becomes important: 02 |

S21 04 |
—straight
—transition

05 | : 51 N
dB 06 - | 50 _=:::::”/’77L\‘\~.~______

-20 e 49 | —straigth
¢ /—4-/ —transition
S11 -30 straight .8 | | |
iti 0 20 40 60
PS
0 20 40 60 80 100 (GHZz
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Loss examples

Loss examples for typical semi-rigid coax, waveguide and microstrip lines

" 2023
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Loss examples
(calculated)
40
35 ———
30 //
’5 25 7 —-Waveguide
° / —+Micro-strip line
e 20 / Semirigid coax
@ 15 — 9
3 ,/,
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Frequency (GHz)
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40

20

Waveguide Bands and Loss

Standard rectangular waveguide loss due to metal
Free spreadsheet from Microwaves101.com

—\WRO0.8 Copper

—\WR1.0 Copper
—=\WR1.2 Copper

WR1.5 Copper
—\WR1.9 Copper
—\WR2.2 Copper ~

WR2.8 Copper \_

WR3.4 Copper

WR4.3 Copper
WR5.1 Copper

o,

Source:

N

[ —

https://commons.wikimedia.org/wiki/File:Wa

|

veguide x EM rect TE31.gif

T

200 400 600 800 1000 1200

Frequency (GHz)

1400 1600

Source: https://www.microwaves101.com/encyclopedias/waveguide-loss
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Waveguide Interface Examples

INRNRRENED

(extends out from
waveguide onto PCB)

By Courtesy Spinningspark at Wikipedia, CC BY-SA 3.0,
https://en.wikipedia.org/w/index.php?curid=53088299

TestConX

Waveguide post
(extends out from
waveguide into coax)
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Atmospheric Loss

40 :
20 n A
10 A\ ]\ / \
. i o A
E 2 /A i f
3 [N~ =
8 / \ JAN / A |
. 2T N L 4l o |
% 0.1 /\\'—"/-7/—4 . %Z —t-——H:0 -
= oA , I
- 7?\.«-/’4 O: : =
01 B - l A: Sea Level —B: 4 km =
— H:O T = 20°C T = 0°C
004 P=760mm  'H;O = gr/m"—
002 ’H;O = 7.5 gr’m’ :
001 L1} 1
10 15 20 25 30 4 5 6 7 8 9 100 150 200 250 300 400

FREQUENCY GHz

Figure 4: Average Almospheric Absorption of Millimeter Waves.
Source: Wikimedia - File:Millimeter waves atmospheric loss.png
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Wave propagation through
air has vastly lower loss
than in coax/PCB traces.

Frequency windows of

higher absorption exists,
however.
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Some mm-wave Socket Design Considerations

* A good design for lower frequency sockets can be used as a point of
departure:

— Scaling (all 3 dimensions) is possible if pitch is also scaled, e.g. a very good 0.8 mm socket design
will likely at least yield a reasonable 0.4 mm pitch design for higher frequency operation.

— Materials that work well to 40 GHz will likely do so to higher frequencies.
— Plating thicknesses need not be scaled.

— The design must be verified since interface parasitics (e.g. L, C) will not necessarily scale as
desired.

TestConX + 2023




Some mm-wave Socket Design Considerations

« PAM — 4 operation requires good crosstalk and good return loss performance

— Return loss will be best if socket is designed to be 100 Ohms differential characteristic impedance
(50 Ohms if signals are single-ended)

— This design will generally NOT be equivalent to an optimal single-ended 50 Ohms impedance case

— It is risky to generalize design advice for minimal differential crosstalk since unexpected results can
and will be encountered. Designs must be verified via simulation in each specific case.

— The PCB design (via and pad/antipad diameters as well as locations must be optimized for the
intended socket.
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PCB Interface — Insertion and Return loss

Example: Coaxial feed structure

(3 different parameter choices shown)

wh N " i wbo N i who

Fraq (o)

A good socket design can be “ruined” by a poor PCB design.

= Te St C 0 nX mm Waves vs. Test Sockets 43 2023




Single Ended vs. Differential Signaling

SE Differential

409

Tz,i [EN

A voltage is established A voltage is established between two signal lines.
between a signal line and The ground (underside of the circuit board) serves
ground. merely as a reference. Thus differential signaling is
much less affected by what surrounds the signal
path. But...
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Signal and Power Paths

«--- Power transient path

Tester PCB ouT
.:.' | : | ? | -4 . LC ¥ ]*1

| Socket i

*. | GND

P - 0 B S ] S VE— | <__. _\—‘.
Tester : PCB _
s ,‘, ,., ——— S ] . - 4,

Signal path --->

At mm-wave frequencies it is imperative to consider not only the signal flow but also
ground return and power delivery paths
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Socket S| Parameters

Impedance Z,
Delay tg
Capacitance C
Inductance L

Mutual elements C, L,

Example of relevant socket parameters
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Relevant Socket Parameters

* Ground locations

* Pitch

» Contact length

» Contact lateral dimensions

* Housing construction (metal vs. dielectric)
» Housing material, e.g. dielectric constant

Only major parameters that affect Sl are listed

TestConX - 2023




Trend tables: Electrical vs. mechanical characteristics

Mechanical
parameters Properties
Electrical dielectric
characteristics diameter . D conductivity constant
L
C
Lm
Cm
Cres
td
Legend: _strong :

J What is most
An increase of the table nerease important for
parameter results in the neutral P

. decrease
following change ----> strong mm-wave
AAY; decrease .
socket:

either way
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Trend tables: Physical characteristics vs. SI/Pl performance

Mechanical
parameters Properties

Performance
parameters Qlameter D length |tch cond uct|V|ty onsta
1

&ip -

v

didt

Zpds
Rdc

Qdot

Tables are based on basic mathematical relations What is most

and frequently observed responses- they are only important for mm-
meant to serve as a guide. wave socket: O
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Dimensions vs. SI/Pl parameters

Pitch Diameter
[Q] [ 60 1 [

- . - n=f- o=
50 +— —Z [ohm] d=.5; e=2 80 p=-6-e=2

AN

—td [ps] / 70
40 / 60 Z [Oh ]\\
41— m
1 / . o~

4| —td [ps]
40
20 30 \
10 G
10
0 T T 1 0 T T T T 1
0}5) 0.7 0.9 1.1 0.1 0.2 0.3 0.4 0.5 0.6 I I “ I l
- J \ J [ ]
[NnH/pf] [ ] ( )
12
d=5: e=2 18

- 16 p=.6; e=2

1 2

3 N / 14 \\ —LnH] ——
! —LI[nH] | 12 —CIpF] =

ol X ~—C [pF] 1 N\

0.4 0.6 /X\
0.2 0.4 ——
0.2
0 : ' 0 ' - . . |
0.5 0.7 0.9 1.1 ) 0.1 0.2 0.3 0.4 0.5 0.6 [m m]
\ J

Mutual inductance and capacitance will change significantly, too

TestConX
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Test Methodology for EHF Socket Measurements

G-S-S-G test
Probes arrangement with
coax feeds

DUT
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Test Methodology for EHF Socket Measurements

De-embedding (Fixture removal):

A process of calibration and data
processing that moves the so-called
reference planes right up to the device
to be tested. This effectively removes
all contributions from coax cables,
probes and fixturing. It leaves only the
data that are associated with the
device under test (DUT) itselr.

Reference planes

TestConX - 2023




Socket Test:

... performance parameters vs. electrical characteristics ...

-

* Insertion loss (S21) [dB] T~

* Return loss (S11)

 Crosstalk (S31, S41) [GHZ]
Port 1 ¢ 4‘ Port 3 Simulated performance (blue) is not always better than

measured (red)

e Impedance @ Z,~=+L/C
* Delay t,
» Capacitance C

* Inductance L

* Mutual elements C_, L,

I e St ‘ 0 nX Contact Optimization for Signal and Power Integrity 53 z oz 3




Typical Test Equipment for EHF Socket
Measurements

 Network analyzers

« Scalar network analyzer
(generate only amplitude response e.q. insertion loss)

* Vector network analyzer

(generate full datasets with phase information that can be used in
system performance simulations

* (Time domain reflectometers)

« Custom built analyzers

TestConX ~2023




Socket Test Interfaces

mm Waves vs. Test Sockets

- Test configuration
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Socket Test Results — Insertion loss

4 Y
S21 (f) —gsg

—CpW probes

cpw pcb

— coax test Insertion loss begins to depend
on feed structure for f> 20 GHz.
A coax test configuration in this
i \)( case provides consistent good

performance beyond 90 GHz.

[dB]
N

0 10 20 30 40 50 60 70 80 90
f [GHZ]

N y

Insertion loss for different feed structures

GGGGGG

(example socket here has 0.35 mm pitch)
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Socket Test Results — Return loss

\

[dB]

10 -
15
20 A
25 |
230 A
-35
-40
-45

S11 (f)

1

0

e CpW probes

cpw pcb

— coax t

est

10 20 30 40 50 60 70 80 90

f [GHZ]

GGGGGG

Insertion loss for different feed structures

(example has 0.35 mm pitch)

TestConX

Return loss depends on feed

structure.

Coax test configuration in this
case provides comparable
performance to direct GSG feed.
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Socket Test Results — Impedance

65

Ohms

50

45

40

N

TDR

60

55 1

—3gsg

cpw probes

cpw pcb

coax test

NS————

50 100
ps

150

GWN 0316

N\

V.

Insertion loss for different feed structures

(example has 0.35 mm pitch)

TestConX

Observed impedance
discontinuities exist depending
on feed structure.

Coax test configuration in this
case provides comparable
performance to direct GSG feed.
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Socket Test Results — Insertion loss

N\

S21 (f) —gsg
—_— b
0 cpw probes
cpw pcb
1 —coax test
e=mcoax test wide
5 -2
-3
-4
-5
O 10 20 30 40 50 60 70 80 90

f [GHZ]

GWN 418

Feed structure with extended bases shows resonances (modes in dielectric)
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Conclusion

e Resonance and interface effects become a
major issue at mm-wave frequencies.

* A PCB design optimization must accompany
socket design/application.

» Use of sockets in mm-wave applications
requires a good grasp of what may happen
when wavelength approaches contact size and
pitch dimensions.

TestConX - 2023
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