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Outline
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• Introduction to mm waves
• Material behavior
• Wavelength effects

– Resonances
– Transitions
– Propagation and loss

• Testing



Objective
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• A brief look at mm-waves and their unique 
characteristics is provided first to set the stage

• Material properties for high frequency operation are 
briefly illuminated 

• Once a basic understanding is developed, socket 
design pitfalls will be addressed 

• Why is there a “vs.” in the title ?



Wavelength vs. Frequency Visualized
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Source: Luzzilice Luzia Planet Fragile Torus on Pinterest



mm Waves
• What are “mm Waves”?

– electromagnetic signals with 10 to 1 mm wavelength
– 30 GHz - 300 GHz
– Also called EHF (extremely high frequency)  or mmW / MMW

• Where are they used ?
– 5G and short range communications, IoT
– automotive radar, security scanners
– Prior to 5G/automotive : 

• Science / radio astronomy / medicine
• military fire-control radar
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mm Waves
Strengths

• Large data rates, video
• Instant response (IoT)
• Good resolution (radar)
• Immunity from interference (short range, directivity)
• Spectrum reuse (short range)
• Small antennas, antenna arrays
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mm Waves
Weaknesses

• Short range (gases, rain drops, humidity)
• No propagation around obstacles
• Loss in traditional circuitry e.g. PCBs, interconnects
• Cost
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mm Waves – what changes ?
• Lateral dimensions in sockets on the order of 

significant fractions of wavelength
• Skin depth, roughness, ‘detours’ into contact, multiple 

spheres
• Radiation into test environment
• Instrumentation accuracy, cost
• Simulation accuracy (component detail, simulation 

setup, mesh size)
• Material properties often unknown
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Permittivity (dielectric constant) and Frequency
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Source: Wikimedia File: Dielectric responses.svg



Permeability (response to magnetization) and Frequency
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Observation:

Permeability approaches 
‘1’ as frequency 
increases since heavy 
dipoles cannot respond 
fast enough to stimulus.

Hence there is no impact 
to be expected on 
millimeter wave 
frequency operation.



Wavelength vs. Frequency

• l =  c / f (c = 3*108 m/s)
(in free space ~air)
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• c =  1 / �( m*e)
(in matter)

e = permittivity
m= permeability



Wavelength vs. Frequency vs. Dielectric Constant
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Waves in a Box
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Source: https://commons.wikimedia.org/w/index.php?curid=7115416
Badseed working on a raster by Brews_ohare - Own work



Wavelength vs. Frequency Visualized
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Resonances in the transverse direction (so-called modes) occur at elevated frequencies

mm waves – mm pitch
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Wavelength vs. Frequency Visualized
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Resonances in the longitudinal direction (so-called modes) occur at elevated frequencies

Length vs. 
wavelength



So what are the consequences of using short 
wavelengths in a test socket environment ?
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Resonances !
• Smooth transitions 

needed
• More loss



Internal Pin Resonance Effects
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Plunger touches only at top and 
bottom, leading to resonances inside 
pins at elevated frequencies.

Note:  While TDR shows 
some changes, the true 
cause and impact can be 
missed.



Resonances in ungrounded or partially grounded pins can occur at 
elevated frequencies

Adjacent Pin Resonance Effects
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fres = l / 4
100 GHz ~ 2mm/4 ~ 0.5mm in polyimide



Inadvertent Adjacent Pin Resonances
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If not properly 
configured parallel 

conductors can 
contribute to resonances

Insertion loss measured for 3 
different displacements



Adjacent Pin Resonance Effects
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Resonances in ungrounded or partially grounded pins can occur at elevated frequencies



External Pin Resonance Effects
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Differential signals Design has ‘floating’ or 
otherwise not matched 
impedance pins near 
signals

Ground (all green) 

Design has controlled 
impedance pins near 
signals (all yellow)

Thickness = 1mm
Pitch =0.35mm



External Pin Resonance Effects
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In general: Resonances appear when wavelength drops below twice pin length, but length 
here is only 1mm !!

Design has ‘floating’ or 
otherwise connected pins 
near signals

Sdd11
[dB]

Design has controlled 
impedance pins near 
signals (all yellow)

Sdd21 
[dB]

GHz GHz



External Pin Resonance Effects
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Resonances in this case occur orthogonal to arrangement as indicated 
and depend on pin configuration and socket boundaries 



Partially terminated pins
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Thickness = 1mm
Pitch =0.35mm

Diff 
signals
(pink)

Open 
contact 
(blue)

Terminated
contacts 
(yellow)



Partially terminated pins
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While a single open circuited contact may be ok (left), 
insertion loss (S21) shows problems in the presence of only a 

few improperly terminated contacts



Ultra-thin interface
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“It” can (and will) still 
happen, just at higher 

frequencies

0.1 mm thick
0.65 mm pitch



Other resonance effects
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• Dielectric resonator

• Whispering gallery modes

Source: Wikimedia - File:St Paul's Cathedral 
Whispering Gallery.jpg   

Source: Wikimedia - File:Whispering gallery 
modes sphere.png   



Eye Diagram in the Presence of Resonances
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Noticeable degradation of load board eye 
diagram (6Gbps) from a 3 GHz resonance 
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Wave propagation at mm waves
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What other considerations must be applied for sending 
mm-wave signals through PCBs and sockets?



RF current flow
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Source: Wikimedia - File:Coax and Skin depth.png, CC0, 
https://commons.wikimedia.org/w/index.php?curid=14208109

With progressively increasing frequency the RF current penetrates the 
conductors less and less



Skin depth
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Effective Resistance as a Function of Frequency
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effective resistance due to the skin effect
(single piece contact, 3mm long).

However, for short contacts this is of little 
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Surface Roughness Illustration
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Illustration of approximate paths for different frequency RF signals

x [um]

d [um]

additional path length here is only approximately 2% for small skin depth



Coax Loss vs. Surface Roughness
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Loss of a 100 mm long 
coax as a function of 
surface roughness



Moving mm waves

• PCB transmission lines (short)

• Coax (semi-rigid preferred) 

• Waveguide

• Beam waveguide
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Source: Wikimedia
File:Sound-waveguide-drain.jpg



Moving mm waves across boundaries

Transition smoothness 
becomes important:
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Loss examples
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Loss examples for typical semi-rigid coax, waveguide and microstrip lines



Waveguide Bands and Loss
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Source: https://www.microwaves101.com/encyclopedias/waveguide-loss

Source: 
https://commons.wikimedia.org/wiki/File:Wa

veguide_x_EM_rect_TE31.gif



Waveguide Interface Examples
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By Courtesy Spinningspark at Wikipedia, CC BY-SA 3.0, 
https://en.wikipedia.org/w/index.php?curid=53088299

Finline
(extends out from 

waveguide onto PCB) Waveguide post 
(extends out from 

waveguide into coax)



Atmospheric Loss
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Source: Wikimedia - File:Millimeter waves atmospheric loss.png

Wave propagation through 
air has vastly lower loss 
than in coax/PCB traces.

Frequency windows of 
higher absorption exists, 
however.



Some mm-wave Socket Design Considerations

• A good design for lower frequency sockets can be used as a point of 
departure:

– Scaling (all 3 dimensions) is possible if pitch is also scaled, e.g. a very good 0.8 mm socket design 
will likely at least yield a reasonable 0.4 mm pitch design for higher frequency operation.

– Materials that work well to 40 GHz will likely do so to higher frequencies.

– Plating thicknesses need not be scaled.

– The design must be verified since interface parasitics (e.g. L, C) will not necessarily scale as 
desired.
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Some mm-wave Socket Design Considerations

• PAM – 4 operation requires good crosstalk and good return loss performance

– Return loss will be best if socket is designed to be 100 Ohms differential characteristic impedance
(50 Ohms if signals are single-ended)

– This design will generally NOT be equivalent to an optimal single-ended 50 Ohms impedance case

– It is risky to generalize design advice for minimal differential crosstalk since unexpected results can 
and will be encountered.  Designs must be verified via simulation in each specific case.

– The PCB design (via and pad/antipad diameters as well as locations must be optimized for the 
intended socket. 
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PCB Interface – Insertion and Return loss
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Example: Coaxial feed structure

(3 different parameter choices shown)

Return loss S11 and insertion loss S21 depend on the internal construction of the PCB.  

A good socket design can be “ruined” by a poor PCB design.



(GND)

Single Ended vs. Differential Signaling
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A voltage is established 
between a signal line and 

ground.

SE

A voltage is established between two signal lines. 
The ground (underside of the circuit board) serves 

merely as a reference.  Thus differential signaling is 
much less affected by what surrounds the signal 

path.  But…

Differential

S S

(G)



Signal and Power Paths
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At mm-wave frequencies it is imperative to consider not only the signal flow but also 
ground return and power delivery paths



Socket SI Parameters
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Example of relevant socket parameters

• Impedance Zo

• Delay td
• Capacitance C

• Inductance L

• Mutual elements Cm, Lm



Relevant Socket Parameters

• Ground locations
• Pitch
• Contact length
• Contact lateral dimensions
• Housing construction (metal vs. dielectric)
• Housing material, e.g. dielectric constant
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Only major parameters that affect SI are listed



Trend tables: Electrical vs. mechanical characteristics
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Legend:

An increase of the table 
parameter results in the 
following change  ---->

What is most 
important for 
mm-wave 
socket:



Trend tables: Physical characteristics vs. SI/PI performance
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Tables are based on basic mathematical relations 
and frequently observed responses- they are only 

meant to serve as a guide. 

What is most 
important for mm-
wave socket:



Dimensions vs. SI/PI parameters
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DiameterPitch

Mutual inductance and capacitance will change significantly, too

[mm]

[W]

[nH/pf]
[mm]



Test Methodology for EHF Socket Measurements
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G-S-S-G test 
arrangement with 
coax feeds

DUT

VNA

Probes



Test Methodology for EHF Socket Measurements
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De-embedding (Fixture removal):

A process of calibration and data 
processing that moves the so-called 
reference planes right up to the device 
to be tested.  This effectively removes 
all contributions from coax cables, 
probes and fixturing.  It leaves only the 
data that are associated with the 
device under test (DUT) itself.

Reference planes

DUT



Contact Optimization for Signal and Power Integrity 53

Socket Test:
… performance parameters vs. electrical characteristics … 

• Insertion loss (S21)

• Return loss (S11) 

• Crosstalk (S31, S41)

Port 1

Port 2

Port 3

Port 4

• Impedance Zo ~ = √ L / C

• Delay td
• Capacitance C

• Inductance L

• Mutual elements Cm, Lm

G
G

S S

[GHz]

[dB]

Simulated performance (blue) is not always better than 
measured (red)



Typical Test Equipment for EHF Socket 
Measurements
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• Network analyzers
• Scalar network analyzer 

(generate only amplitude response e.g. insertion loss)

• Vector network analyzer 
(generate full datasets with phase information that can be used in 
system performance simulations

• (Time domain reflectometers)

• Custom built analyzers



Socket Test Interfaces

mm Waves vs. Test Sockets 55

GSG with direct feed     - CPW probes - CPW on PCB - Test configuration



Socket Test Results – Insertion loss
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A coax test configuration in this 
case provides consistent good 
performance beyond 90 GHz.



Socket Test Results – Return loss
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Socket Test Results – Impedance
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Socket Test Results – Insertion loss
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Conclusion

• Resonance and interface effects become a 
major issue at mm-wave frequencies.

• A PCB design optimization must accompany 
socket design/application.

• Use of sockets in mm-wave applications 
requires a good grasp of what may happen 
when wavelength approaches contact size and 
pitch dimensions.
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