TWENTY THIRD ANNUAL

May 1 - 4, 2022

TestConX

DoubleTree by Hilton Mesa, Arizona ACCINE

© 2022 TestConX– Image: f11-photographer / iStock

Operations 1

Smart Manufacturing

Edge Computing Inference Opportunities and Challenges in ATE

Eli Roth Pady Kannampalli Teradyne

Mesa, Arizona • March 6–9, 2022

TERADYNE

TestConX Workshop

www.testconx.org

TestConX 2022

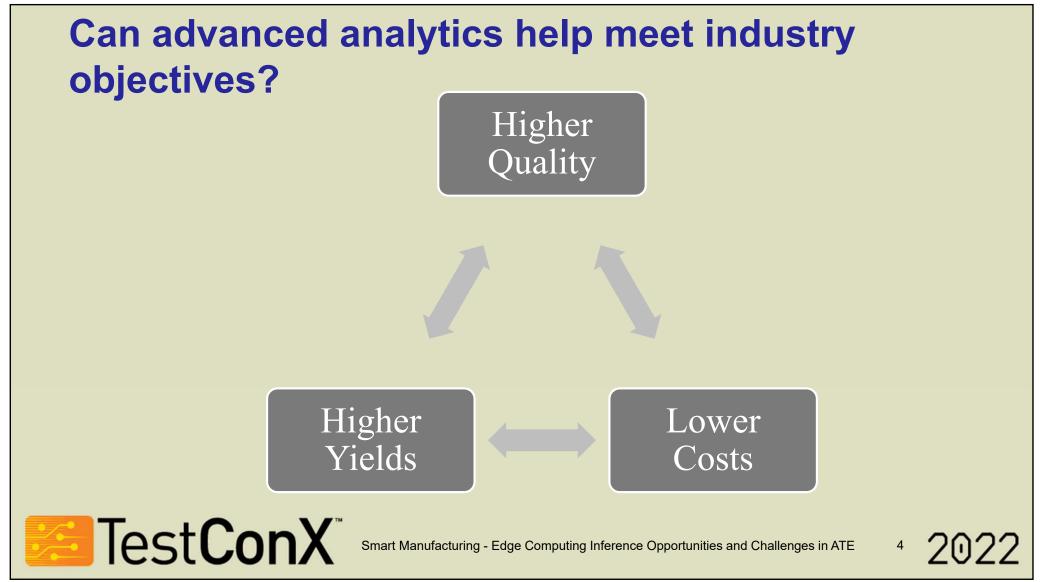
Operations 1

TestConX Workshop

www.testconx.org

Operations 1

The World is Adopting Data Analytics and Artificial Intelligence



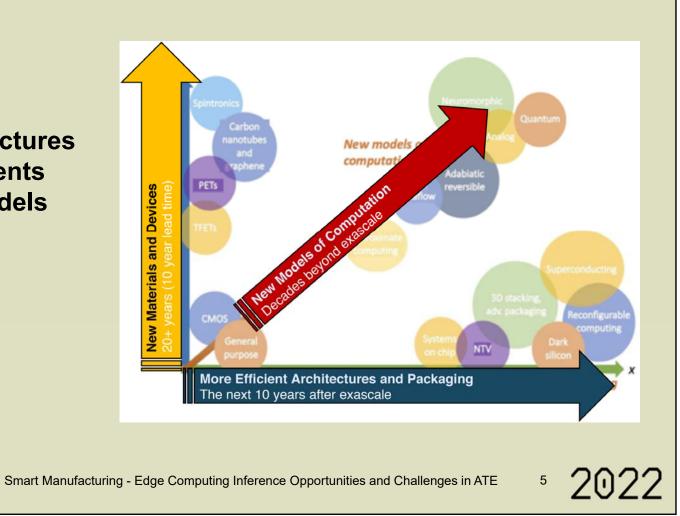
TestConX Workshop

www.testconx.org

Operations 1

TestConX Workshop

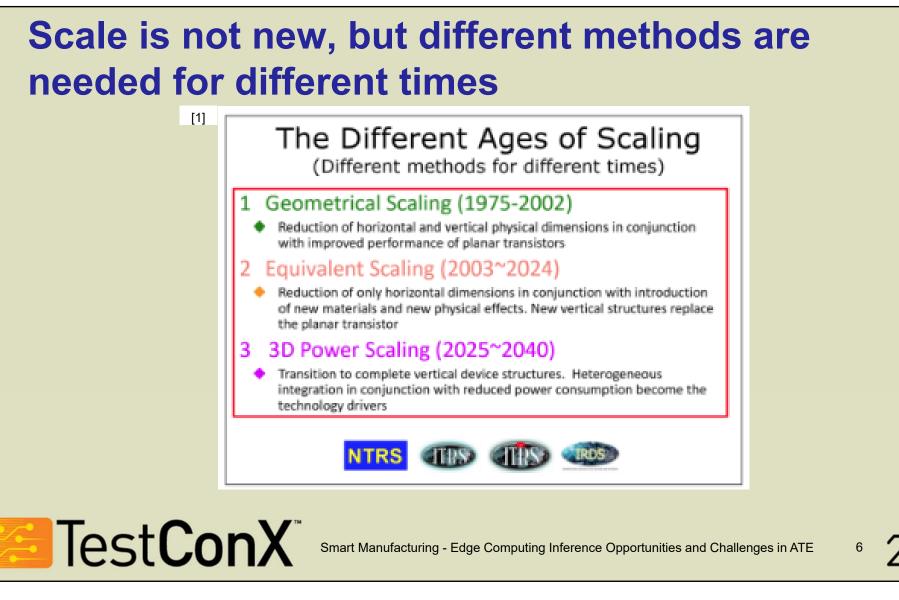
www.testconx.org


Operations 1

TestConX 2022

Increasing complexity is an industry wide challenge

- 1. Advanced Materials
- 2. New Devices
- 3. More Efficient Architectures
- 4. Packaging Improvements
- 5. New Computation Models


Test**ConX**®

www.testconx.org

Operations 1

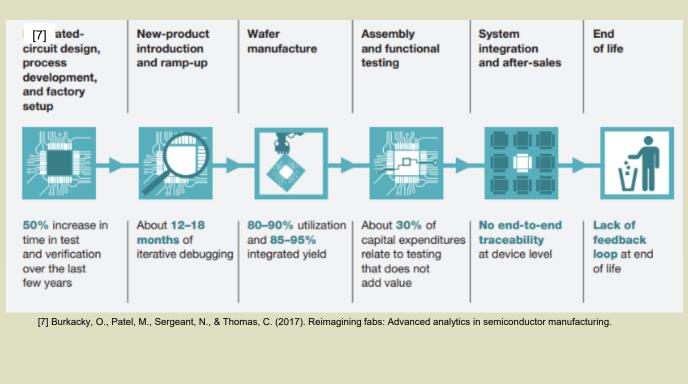
Operations 1

Scale is not new, but different methods are needed for different times

	Improvement Paths				
Improvement Paths	Algorithmic improvement	Memory bandwidth	Memory latency	Network bandwidth	Fixed-function acceleration
Application Area					
Big Data Analytics		х	X	х	Х
Artificial Intelligence	х	х			x
Discrete Event Simulation		х	x		
Physical System Simulation	Х	х	х	х	
Optimization	х	x	X		х
Graphics/VR/AR	х	х			Х
Cryptographic codec		х			x

Smart Manufacturing - Edge Computing Inference Opportunities and Challenges in ATE

7

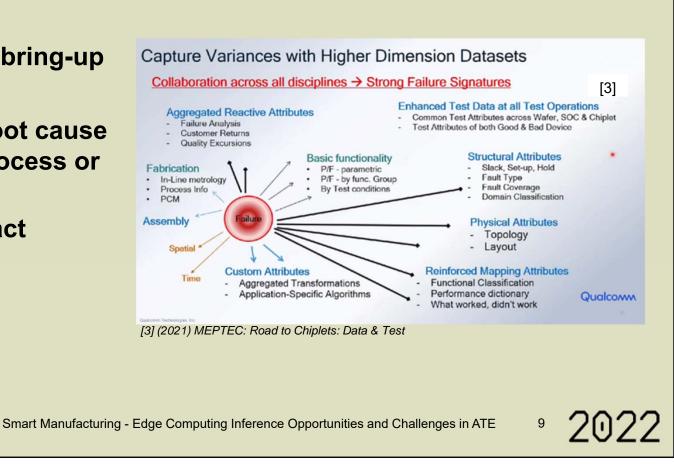

Operations 1

Current value chain is improving, but continuous improvement is required

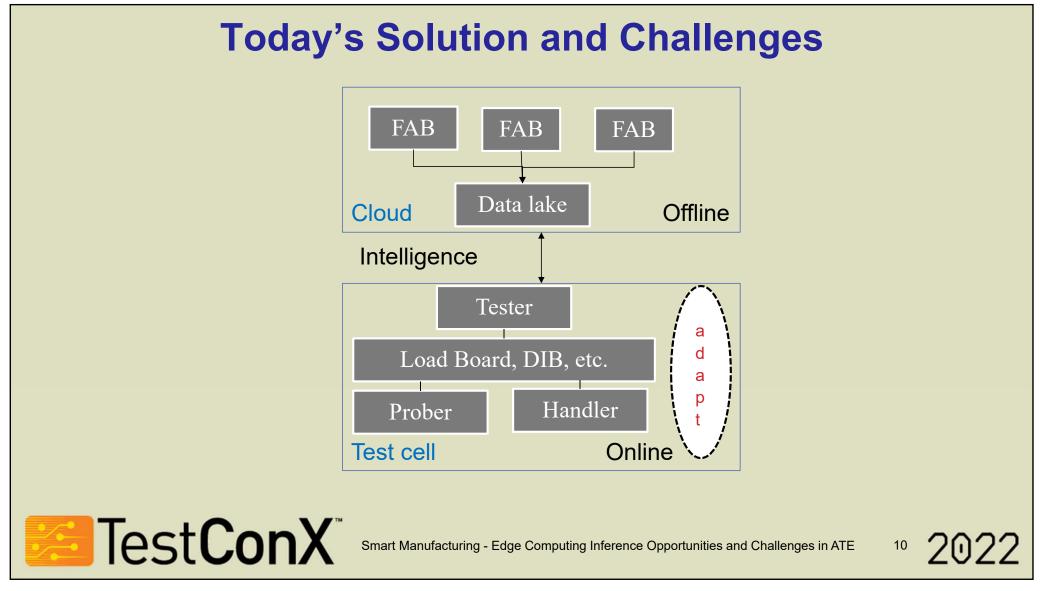
Manual intervention with some degree of automation

Improving processes by creating analytical tools

- Replace guesswork and human intuition
- Fact-based knowledge
- Pattern recognition


Smart Manufacturing - Edge Computing Inference Opportunities and Challenges in ATE

Existing and near-term solutions are a combination of automation, expert systems and advanced analytics

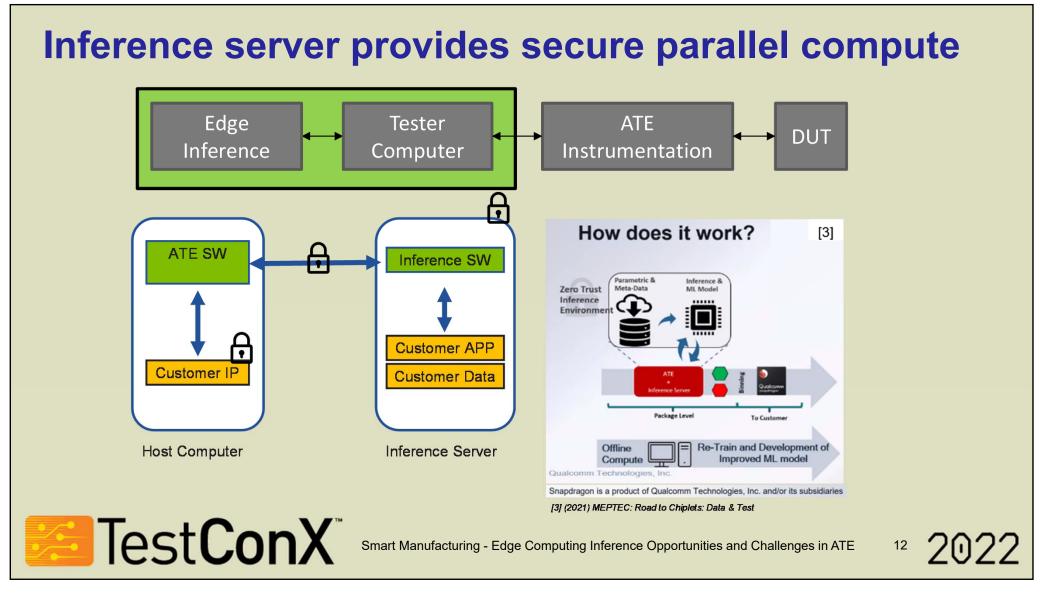

- 1. Expedite Test program bring-up
- 2. Shorten debug cycles
- 3. Accurately associate root cause failures with design, process or equipment issues
- 4. Minimize test time impact

Test**ConX**

TestConX 2022

Operations 1

TestConX Workshop


www.testconx.org

22

Today's Solution and Challenges

			<u> </u>	
		SOLUTIONS	CHALLENGES	
	Offline	 Data collected from multiple OSATs is analyzed to identify systematic issues Recommendations to test teams of potential causes of variance 	 A knowledge network to augment analytics and provide optimal, robust & usable recommendations Security and latency deploying intelligence to the test cell 	
	Online	 Secure inference compute connected to tester, e.g., Edge inference Low latency and does not add to floor space Integrates with ATE OS / test program to minimize test time overhead 	 Capture data variance from test cell equipment Update intelligence in real time Scalability at OSATs 	
Test (Con	X [™] Smart Manufacturing - Edge Computir	ng Inference Opportunities and Challenges in ATE	⁼ 1° 20

Operations 1

TestConX Workshop

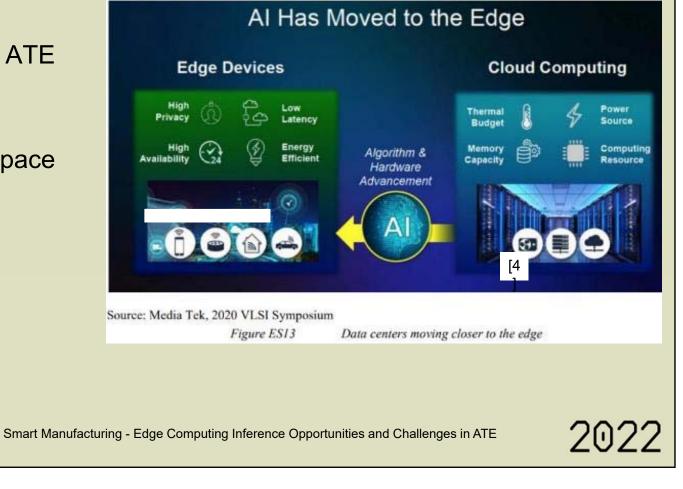
www.testconx.org

Operations 1

Inference server provides secure parallel compute

- 1. On-the-fly machine learning scoring/decision making
- 2. Zero Trust Environment
- 3. Minimum Latencies
- 4. Easy model integration with test programs and ATE Control

Smart Manufacturing - Edge Computing Inference Opportunities and Challenges in ATE


www.testconx.org

Test Cell Edge Inference Compute Requirements

BENEFITS

- 1. Secure communication to ATE OS
- 2. Low latency
- 3. Does not consume floor space

Test**ConX***

Operations 1

Test Cell Edge Inference Compute Requirements

Challenges

- 1. Inference limited test time
- 2. Adds to test cell infrastructure capital cost
- 3. Combines knowledge and data analytics for inference

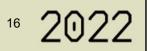
Table AB-4 AI/ML Deployment Platforms and Constraints					
Deployment Platforms	High Performance (Cloud)	Real Time Inference (IoT Edge)	Resource- constrained Inference (IoT Edge MCU/IOT)		
Training System	Cloud	Cloud	Cloud		
Inference System	Cloud	IoT Edge Computer	IoT Edge Microcontroller		
Training Speed	High	High	High		
Inference Throughput (pages/second)	High	Medium	Low		
Inference Latency (milliseconds)	High	Low	Low		
Compute	High	Medium	Low		
Cost	High	Medium	Low		
Power	High	Medium	Low		

IEEE: 2021 International Roadmap for Devices and Systems

Smart Manufacturing - Edge Computing Inference Opportunities and Challenges in ATE

TestConX 2022

Operations 1


Conclusion

Advanced analytics coupled with automation and knowledge systems can facilitate in addressing the upcoming challenges

- Advanced analytics are needed
- Security, infrastructure and latency will be balanced between offline and online analytics
- Data
 - Collaboration, and sharing data and intelligence between design and test cell equipment vendors is necessary
 - Data variances will be used to build algorithms for inference

Smart Manufacturing - Edge Computing Inference Opportunities and Challenges in ATE

TestConX 2022

Operations 1

References

[1] (2021) IEEE: 2021 International Roadmap for Devices and Systems (IRDS) website. [Online]. Available:

[2] https://irds.ieee.org/images/files/pdf/2021/2021IRDS_ES.pdf

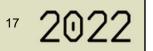
[2] https://irds.ieee.org/images/files/pdf/2020/2020IRDS_AB.pdf

[3] (2021) MEPTEC: Road to Chiplets: Data & Test website. [Online]. Available:

[4] <u>https://events.meptec.org/wp-content/uploads/ChipletsDataTest/DataTest2021Mier.pdf</u>

[5] <u>Shalf John</u> 2020 The future of computing beyond Moore's Law Phil. Trans. R. Soc. A.3782019006120190061 [Online]. Available:

[6] http://doi.org/10.1098/rsta.2019.0061


[7] Burkacky, O., Patel, M., Sergeant, N., & Thomas, C. (2017). Reimagining fabs: Advanced analytics in semiconductor manufacturing. Article,[Online: Available:

https://www.mckinsey.com/industries/semiconductors/our-insights/reimagining-fabs-advanced-analytics-in-semiconductor-manufacturing] March.

[8] https://451research.com/services/customer-insight/voice-of-the-enterprise

Smart Manufacturing - Edge Computing Inference Opportunities and Challenges in ATE

With Thanks to Our Sponsors!

With Thanks to Our Sponsors!

COPYRIGHT NOTICE

The presentation(s) / poster(s) in this publication comprise the Proceedings of the TestConX 2022 workshop. The content reflects the opinion of the authors and their respective companies. They are reproduced here as they were presented at the TestConX 2022 workshop. This version of the presentation or poster may differ from the version that was distributed at or prior to the TestConX 2022 workshop.

The inclusion of the presentations/posters in this publication does not constitute an endorsement by TestConX or the workshop's sponsors. There is NO copyright protection claimed on the presentation/poster content by TestConX. However, each presentation / poster is the work of the authors and their respective companies: as such, it is strongly encouraged that any use reflect proper acknowledgement to the appropriate source. Any questions regarding the use of any materials presented should be directed to the author(s) or their companies.

"TestConX", the TestConX logo, and the TestConX China logo are trademarks of TestConX. All rights reserved.