TestConX+E

Virtual Archive

October 26 – 29, 2021 Virtual Event

www.testconx.org

© 2020 TestConX– Image: Toa55 / iStock

With Thanks to Our Sponsors!

Distinguished

TSE smiths interconnect

Feldman Engineering Exhibitor ADVANTEST.

2021

5G / mmWave

Challenges of HVM OTA Testing for mmWave Devices

Frank Goh, Yasuyuki Kato, Natsuki Shiota, Hiroyuki Mineo, Aritomo Kikuchi, Sui-Xia Yang, Hiromitsu Takasu and Jose Moreira

Virtual - October 26-29, 2021

ADVANTEST,

TestConX China Workshop

TestConX.org

TestConX China 2021

5G / mmWave

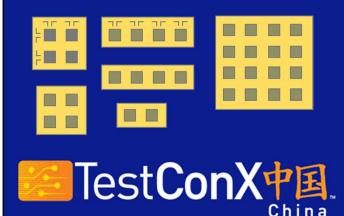
Contents

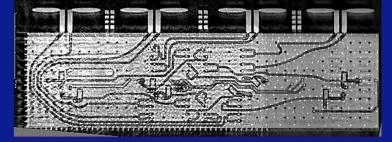
- Introduction
- HVM OTA
- OTA Test Challenges

Challenges of HVM OTA Testing for mmWave Devices

TestConX China Workshop

TestConX.org

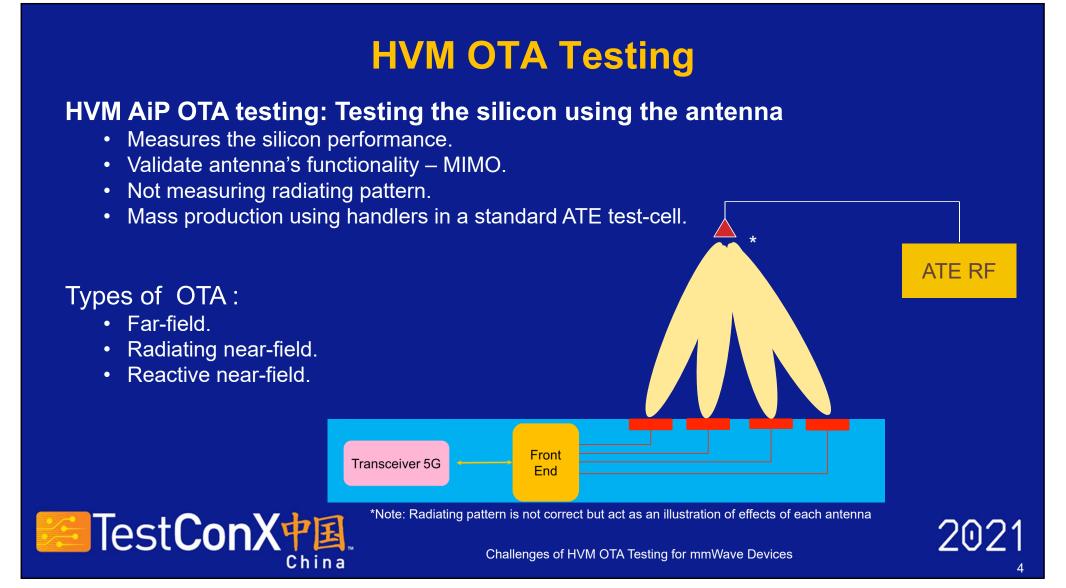

5G / mmWave


TestConX China 2021

Why OTA Testing?

Antenna-in-Package(AIP)

- No contact access for mmWave ports
 - Antennas are built-in.
 - Antenna is the only access for mmWave.
- AiP package substrates can be very complex:
 - Multiple layers.
 - Complex routing and via interconnect.

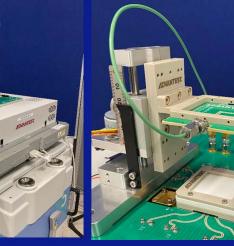


TestConX China 2021

5G / mmWave

5G / mmWave

TestConX China 2021

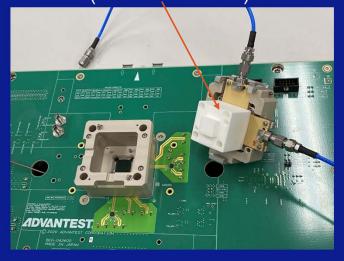

OTA Manual Test

OTA Manual test setup for characterization and test program development:

- Setup to be similar to handler.
- Special socket that does not impact radiating signal.
- Custom antenna that fits in socket.

Custom socket lid made with electromagnetic transparent material

Far-field OTA setup


China

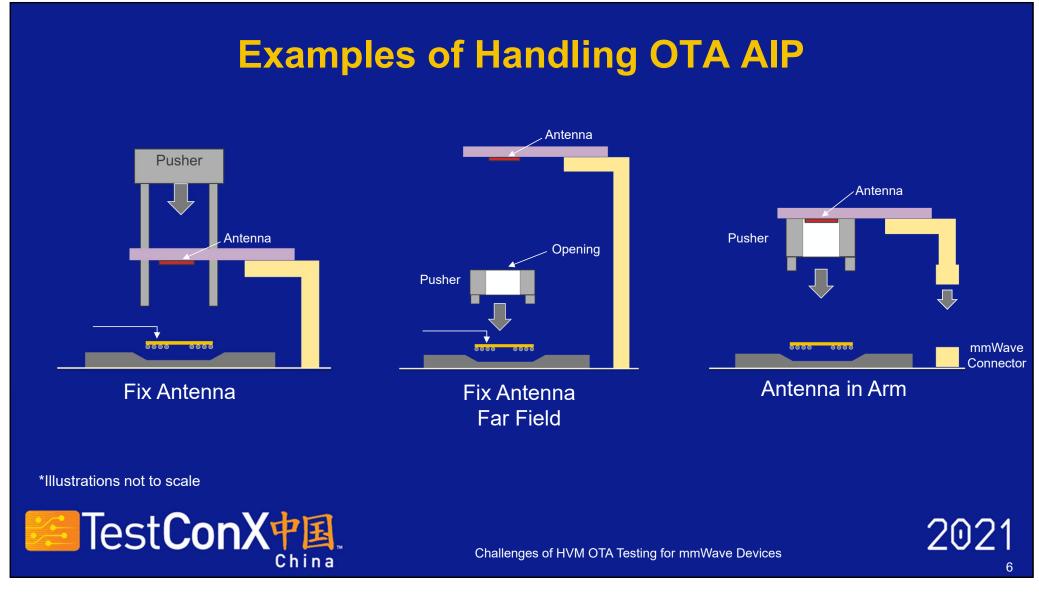
Test**ConX中国**。

Precision adjustable height OTA setup controllable by software

Challenges of HVM OTA Testing for mmWave Devices

Manual engineering socket with DUT pusher (antenna behind it)

Radiating near-field OTA setup

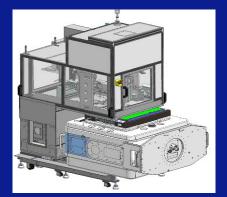


TestConX China Workshop

TestConX.org

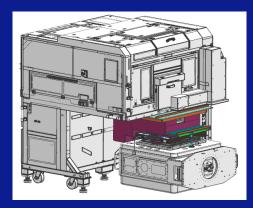
5G / mmWave

TestConX China 2021

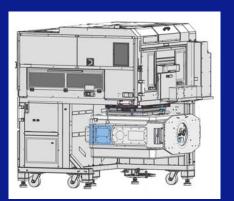

TestConX China Workshop

TestConX.org

5G / mmWave


TestConX China 2021

HVM OTA Test Cell


Far-Field/Near-Field Engineering OTA Handler

- Limited to 1-site possible.
- Allows for easy change between farfield and near-field for correlation.
- Tri-temp.

OTA Test Module

- Independent OTA module provides OTA testing using a separate feeding arm approach.
- No handler modifications required.
- Near-field up to 8 sites.
- Far-field up to 2 sites.
- Tri-temp.

Near-Field OTA Handler

- Requires OTA change kit with mmWave blind mating interconnect.
- Only near-field OTA testing possible.
- Up to 8 sites possible.
- Tri-temp.

TestConX+E.

Challenges of HVM OTA Testing for mmWave Devices

5G / mmWave

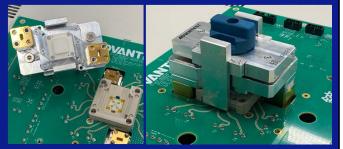
TestConX China 2021

Antennas for HVM OTA

Antenna for HVM testing requirements:

- Gain is not critical, bandwidth is more important. •
- Customised to fit in handler/arm. •
- Required to cover all frequency bands in the test program.
- Able to withstand production environment. •

Manual socket with coaxial interconnect



Dual polarized PCB antenna With blind mating interconnect

Dual polarized waveguide antenna with blind mating interconnect

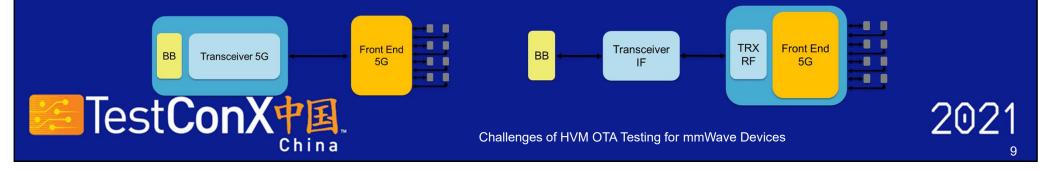
Dual polarized PCB antenna with coaxial interconnect

Manual socket with blind mating interconnect

2021

Challenges of HVM OTA Testing for mmWave Devices

TestConX China Workshop


TestConX.org

TestConX China 2021

5G / mmWave

OTA Tests

ТХ	RX
Gain, Gain Steps	Gain, Gain Steps
P1db	IP3
Phase Shift (Beamforming)	Phase Shift (Beamforming)
Flatness	Flatness
EVM	EVM
ACPR	Isolation
Spurs	Noise Figure
Isolation	

TestConX China 2021

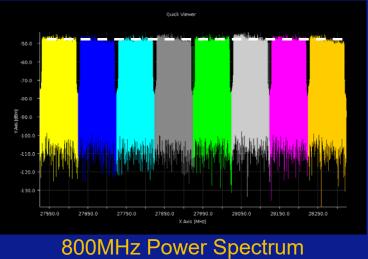
5G / mmWave

Differences between OTA & Contact Test

ΟΤΑ	Contact
Per radiator/port, polarization & antenna array	Per port
High path/air loss	Path loss mainly due to cables & trace
No direct access to "port" for debug	Direct contact
Polarization Isolation is limited by measurement antenna	Very high isolation possible
Focus calibration needed	Focus calibration may not be necessary
Socket cover/pusher can affect performance	Performance is not affected by socket cover
Test cell customization needed	Standard HVM test cell

Challenges of HVM OTA Testing for mmWave Devices

2021


TestConX.org

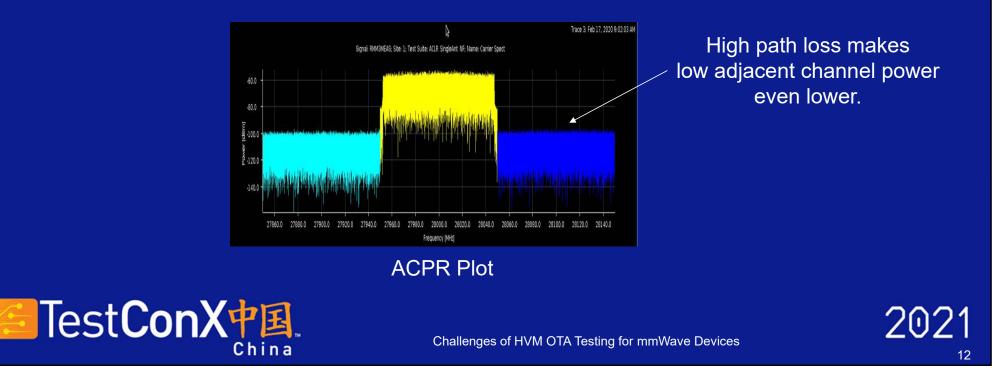
5G / mmWave

TestConX China 2021

Gain, P1db and Flatness

- Path loss:
 - Air & dielectric loss, cables and connectors are tricky to compensate in the near-field.
- OTA key difference:
 - Combine port array as well per port measurements.
 - Phase shift of each port is important when combining ports.
 - Per port path loss is different from array loss. Needs to be compensated separately.

Challenges of HVM OTA Testing for mmWave Devices

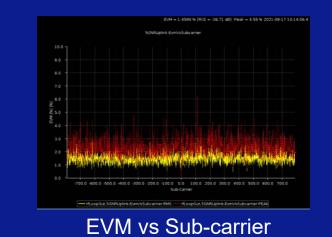

2021

TestConX China 2021

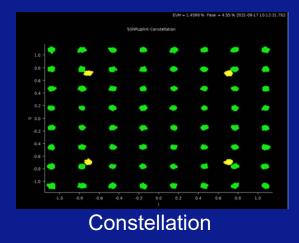
5G / mmWave

Adjacent Channel Power Ratio (ACPR)

- High path loss can cause the adjacent power measured to be even lower.
- Instrument with low noise floor and low phase noise required.
- OTA key differences:
 - Combine port array instead of just per port.
 - Phase shift of each port is important during test.



5G / mmWave

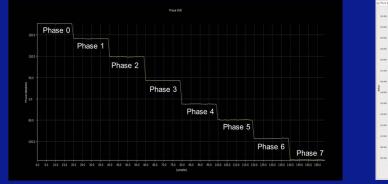

TestConX China 2021

EVM Measurement

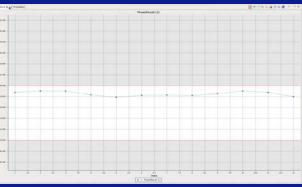
- Wide Bandwidth (100M-800MHz) means signal power per carrier are lower for same total rms power.
- High path loss can reduce the measured signal power, and stim power needs to be increased.
- Measurement instrument with low noise floor and low phase noise needed.
- Source instrument with high P1db power is required.
- OTA Key differences:
 - Combine port array EVM instead of just per port.
 - Phase shift of each port is important during test.

Challenges of HVM OTA Testing for mmWave Devices

2021


TestConX China Workshop

5G / mmWave


TestConX China 2021

Phase Measurement

- Key measurement for MIMO.
- Accurate phase measurement at mmWave frequency.
- Absolute Phase very sensitive to path/antenna distance.
- Requires phase compensation due to path.
- Instrument with low phase noise is required

Phase vs Time

Phase Repeatability (<0.5 deg)

Relative Phase Measurements

Challenges of HVM OTA Testing for mmWave Devices

Phase Linearity

2021

5G / mmWave

TestConX China 2021

Summary

- OTA testing presents new challenges for Test Engineers.
- Careful design is required for the OTA socket and antenna.
- Integration of OTA in standard production test cell requires special considerations.
- It is important to have a clear strategy for HVM OTA testing.

Challenges of HVM OTA Testing for mmWave Devices

2021

15

COPYRIGHT NOTICE

The presentation(s)/poster(s) in this publication comprise the proceedings of the TestConX China 2021 virtual event. The content reflects the opinion of the authors and their respective companies. They are reproduced here as they were presented at TestConX China. The inclusion of the presentations/posters in this publication does not constitute an endorsement by TestConX or the workshop's sponsors.

There is NO copyright protection claimed on the presentation/poster content by TestConX. However, each presentation/poster is the work of the authors and their respective companies: as such, it is strongly encouraged that any use reflect proper acknowledgement to the appropriate source. Any questions regarding the use of any materials presented should be directed to the author(s) or their companies.

TestConX, TestConX China, the TestConX logo, and the TestConX China logo are trademarks of TestConX. All rights reserved.

www.testconx.org

2021