VIRTUAL EVENT

TestConX

Presentation Archive May 3-7, 2021

TestConX.org

© 2021 TestConX- Image: tonda / iStock

Demonstrating V93000 WSMX-HR Analog Performance Requirement in TWS Application

Hersy Liu Advantest

Virtual Event • May 3 - 7, 2021

Contents

- True Wireless Stereo (TWS) Introduction
- WSMX-HR / Audio precision Specification Introduction
- WSMX-HR AWG / AP Performance Comparison
- WSMX-HR Digitizer / AP Performance Comparison
- Conclusion

What We Know about TWS...

How does TWS Works?

Instrument

- Audio Precision(AP)
- V93000 WSMX AWG
- V93000 WSMX Digitizer

Audio Precision

- APx audio measurement software offers:
 - Multi-mode UI
 - Code-free automation
 - Host of application-specific software options
- Test of speakers, headphones and microphones

Demonstrating V93000 WSMX-HR Analog Performance Requirement in TWS Application

APx500 Flex Key

WSMX – High Resolution

- 32 instruments per card
- 16 Units per Wave Scale MX card
- All can be used in parallel, independent, full pattern controlled
- 64 bidirectional analog pogos incl. PMU

- Advantest V93000
- WaveScale Mixed Signal card
- High Resolution Unit:
 - High Resolution AWG
 - High Resolution Digitizer
- Resolution 24 bits
- PMU Per Pogo
- Test Processor Controlled Synchronization
- Large Memory Pool
- Hardware Signal Processing Unit (SPU)

V93000 Capabilities

- Audio Uplink : WSMX AWG
- Audio Downlink : WSMX Digitizer

Bluetooth 5.0 - Audio Uplink

• ADC Testing

300m

- ATE source 3.0KHz sine wave into device
- AWG M=31, N=2048, Fs=198.194Kbps

AD

-20

250m -40 200m -60 150m -80 -100 100n -120 50m ଞ୍ଚି -140 ब ब-160 -50m -180 -100n -200 -150m -220 -200m -240 -250m -260 t-domain -280 -300m 500u 600u

Test**ConX**

Scope

Demonstrating V93000 WSMX-HR Analog Performance Requirement in TWS Application

500 1k

WSMX High AWG Performance

Bluetooth 5.0 - Audio Downlink

- DAC Testing
 - ATE measure 1.5KHz sine waveform from device
 - Digitizer M=9, N=1024, Fs=170.667Kbps
- Different Signal Level
 - OdB (large signal)
 - n20dB (middle signal)
 - n60dB (small signal)

- Correlation
 - Audio Precision
 - WSMX Digitizer

Large Signal (0dB) Spectrum Comparison

V93000 WSMX-HR

VS.

Audio Precision

WSMX High DGT Performance on 0dB

Middle Signal (-20dB) Spectrum Comparison

Demonstrating V93000 WSMX-HR Analog Performance Requirement in TWS Application

V93000 WSMX-HR

VS.

Audio Precision

WSMX High DGT Performance on n20dB

Small Signal (-60dB) Spectrum Comparison

VS.

WSMX High DGT Performance on n60dB

Conclusion

• V93000 WSMX HR demonstrate high analog performance especially for high quality and low noise TWS headphone products.

	Audio Uplink	Low Limit	Audio Downlink	Low Limit	Unit
SNDR	91.0693	70	87.796	83	dB
SNR	92.25831	70	88.985	83	dB
THD	104.8499	70	94.11	83	dB
Noise floor	~135		~110		dB
In-band Harmonic	<115		<105		dB

Reference

- https://www.ap.com/analyzers-accessories/apx52x/
- http://emilymacgyfu.blogspot.com/2019/09/tws-true-wireless-stereo.html
- https://www.telecomlead.com/telecom-statistics/wearable-bands-and-tws-earbud-to-grow-32-canalys-97423
- https://www.apple.com/tw/shop

With Thanks to Our Sponsors!

With Thanks to Our Sponsors!

With Thanks to Our Sponsors!

Cohu

The Market Leader in Test Interface Solutions for the Most Challenging Applications

Mobility

Precision Analog & Sensors

High End Digital

Automotive & Power

RF

ELASTOMET SOCKET & INTERPOSERS

- High performance and competitive price
- High speed & RF device capability
- Various customized design to meet challenge requirement

POGO SOCKET SOLUTIONS

- Excellent gap control & long lifespan
- High bandwidth & low contact resistance

THERMAL CONTROL UNIT

- Extreme active temperature control
- Safety auto shut-down temperature monitoring of the device & thermal control unit
- Full FEA analysis & Price competitiveness

BURN-IN SOLUTIONS

- Direct inserting on the board without soldering
- Higher performance BIB solution

CONTACT ISC CO., LTD **ISC HQ** Seong-nam, Korea **ISC International** Silicon-valley, CA Tel: +82-31-777-7675 / Fax: +82-31-777-7699 Email: <u>sales@isc21.kr</u> / Web: <u>www.isc21.kr</u>

WIN IWIN Co., Ltd.

The test probe for high signal integrity at extremely high speed test

Spring probe by stamping

250 kinds of spring probe pin

300 kinds of test socket (44,000 Pin count socket possible)

One piece spring probe

Three piece spring probe

High speed product → 0.63mm free length

spring probe pin available

Finest Pitch → 0.15mm Pitch

Spring probe by stamping

		Patented Current Carrying(Amps)	
Pitch(mm)	Free Length(mm)		
0.15/0.2/0.25	2.17~	0.5~	
0.3	1.5~	1.5~	
0.35	2.08~	1.8~	
0.4	0.8~	2.5~	
0.5	1.5~	3.0~	
0.65	1.13~	9.0~	
0.8	3.14~	3.0~	

Automation Pin assembly and Quality control

pins socket

Top Figure: Socket CRES, Force, Stroke test Bottom Figure: Data displayed

Socket and Lid

(by IWIN)

- Stamped piece parts attached to a

reel fed into the assembly machine

Bottom Figure: Data display 5,903

Pin assembly

(Fully automated machines)

Spring probe pins for High speed

Extremely short spring probes by stamping

One piece spring prob **Design approach**

0.50

00.32

Insertion Loss - HPSP28063F1-01

Return Loss - HPSP28063F1-01 0.00 -10.00 62.01GHz -20.00 -30.00 -40.00 -50.00 Curve Info dB(St(Dim),Dim)) -60.0 -70.00 0.00

SOLUTION

Copyright©2021 IWIN Co.,Ltd all right reserved Homepage. www.iwinsn.com Tel. +82-10-6417-7580 E-mail. aj@iwinsn.com

High Performance Probe solution

COPYRIGHT NOTICE

The presentation(s)/poster(s) in this publication comprise the proceedings of the 2021 TestConX Virtual Event. The content reflects the opinion of the authors and their respective companies. They are reproduced here as they were presented at the 2021 TestConX Virtual Event. The inclusion of the presentations/posters in this publication does not constitute an endorsement by TestConX or the workshop's sponsors.

There is NO copyright protection claimed on the presentation/poster content by TestConX. However, each presentation/poster is the work of the authors and their respective companies: as such, it is strongly encouraged that any use reflect proper acknowledgement to the appropriate source. Any questions regarding the use of any materials presented should be directed to the author(s) or their companies.

"TestConX" and the TestConX logo are trademarks of TestConX. All rights reserved.

