Production Wafer Probe of 77-81 GHz Automotive Radar Applications

Jason Mroczkowski (Cohu)
Marty Cavegn (Cohu)
Jory Twitchell (NXP)
Outline

• Introduction
 – Automotive Radar device and testing trend

• Benefits and challenges in testing the new generation of devices

• Testing requirements and options
 – Pogo with PCB Stealth (patent pending)
 – xWave with Stealth (patent pending)
 • Advantages
 • Modification to the standard xWave

• Test results
 – Initial and current

• Improvements along the way

• Next and ongoing steps

• Summary/Conclusion
Introduction

• **Automotive Radar has been used since 2007**
 – First generation (Approximately 2007 – 2013)
 • 28 GHz
 • Short range
 • Limited functionality
 • 80 GHz – improved resolution
 • Longer range
 • Increased functionality
• **Now entering a third generation** (2019-TBD)
 – 80 GHz
 – Longest range
 – Increased performance and functionality
 – Lower cost
 – New testing challenges
Challenges with the Second Generation

- Second generation (Presented by Brian Nakai at BiTS 2017)
 - Devices packaged in traditional formats (i.e. BGA, QFN, etc.)
 - Multiple packages for receiver (RX), transmitter (TX) and voltage controller (VCO)
 - Packages combined into module
 - Testing required at multiple levels (wafer, film frame, package, transceiver module)
 - About 15 tests, many of them repetitive
 - mmWave Automated Test Equipment (ATE)
 - Expensive new
 - Difficult to get repeatable results due to sensitivity
 - Extensive set-up due to calibration
 - Basically, need an RF Lab on your test floor with RF engineers to keep it going!
Benefits in Testing the New Generation

• **Third generation**
 – Die level integration of receiver (RX), transmitter (TX) and voltage controller (VCO)
 – Packages no longer required
 – Testing required at wafer with fine pitch without RF and redistributed wafer test at speed WLCSP
 • Ambient, hot, cold, fewer total tests and less repetition (4 total)

• **Built-in Self Test (BIST)**
 – BIST allows die to do internal testing
 – Eliminates need for expensive mmWave test equipment
 – Better fit with standard wafer test environment

• **Multi-site testing**
 – Higher throughput
Challenges in Testing the New Generation

- **Built-in Self Test (BIST)**
 - Requires the I/O for the high frequency signals to be properly terminated while still providing a path for sourcing a DC voltage to the DUT.
 - New functionality in the test hardware/probehead
 - Dual frequency ranges to optimize with differing absorption requirements

- **Wafer/WLCSP testing**
 - Smaller target
 - More sensitive to coplanarity
 - Temperature sensitivity

- **Integration of the three devices into one die**
 - More complex test program
Challenges in Testing the New Generation (cont.)

- **Multi Site Testing**
 - Coplanarity challenges
 - Reduction of forces
 - Adding support for PCB (Bridge Beam)
 - Site to site alignment
 - Site to site variation
 - CTE

- **Contact Technology – Dual**
 - Spring Probes for standard signals
 - Leadframe for RF frequency signals

- **Production Worthy Solution**
Test Solutions – Absorber on PCB

• Initially considered Solution

• Pogo Pins with Trace to termination on PCB (SMT resistor or absorber)

• 90° transition at PCB creates significant signal reflection before termination
Test Solutions – Prototype Build
Leadframe with PCB Connection

Issues Solved
- Straight leadframe with shallow angle connection to PCB reduces reflections
- Absorber attenuates signal

New Issues
- Tolerances of absorber create mechanical bowing issues
- Initial leadframe mechanics require larger than planned overdrive

Production Wafer Probe of 77-81 GHz Automotive Radar Applications
Test Solutions – Prototype Build
Leadframe with PCB Connection – Multi-site

- Multi-site required some new thinking with leadframes fanning out at 45° from three sides
- Quad-site Diagonal skipped die
- Angled 25mm leadframes
Challenges in Prototype Build

• Bowing of probehead
 – Additional mounting locations required
 – Reduction of force applied by absorbers – more compliant second layer
 – Redesign of components to add rigidity

• Coplanarity of PCB
 – Stiffener in original design
 – Added adjustable support beam to coplanarize

• Logistics across engineering and production sites
 – Probe Card Stiffener compatibility
 – Good yield and contact in original engineering site
 – Inconsistencies once installed in production site
Field Results - Initial Production with Prototype Build

<table>
<thead>
<tr>
<th>Leadframe</th>
<th>Ambient</th>
<th>HOT</th>
<th>COLD</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 POGO</td>
<td>L</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>2 POGO</td>
<td>L</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>3 POGO</td>
<td>L</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>4 POGO</td>
<td>L</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>5 POGO</td>
<td>L</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>6 POGO</td>
<td>L</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>7 POGO</td>
<td>L</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>8 POGO</td>
<td>L</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>9 POGO</td>
<td>L</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>10 POGO</td>
<td>L</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>11 POGO</td>
<td>L</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>

Total overdrive of about 11 mils to achieve continuity

Successful but window was limited and production team wanted improvements.
• Spring damper to better support leadframes
• Absorber damper to add compliance/reduce bowing of top plate
Field Results – Improved Production

- Full continuity at all temps at 8 mils of overdrive
- Max overdrive of 13 mils allowed
- 5 mil working window
- Production team approved for release

Table:

<table>
<thead>
<tr>
<th>Ambient</th>
<th>Hot</th>
<th>Cold</th>
</tr>
</thead>
<tbody>
<tr>
<td>Over Drive</td>
<td>Over Drive</td>
<td>Over Drive</td>
</tr>
<tr>
<td>POGO</td>
<td>LEADFARM</td>
<td>POGO</td>
</tr>
<tr>
<td>LEADFARM</td>
<td>LEADFARM</td>
<td>LEADFARM</td>
</tr>
</tbody>
</table>

Lead frames and pogs all working at similar windows across temperature range – Dec.

Diagram:

- Lead frame's probing window
- POGO's Probing window

TestConX™

Production Wafer Probe of 77-81 GHz Automotive Radar Applications
Field Results – Ongoing Concerns

• Over 250,000 insertions on the first probe head
• In-Situ cleaning as angled leadframes are more difficult to clean than pogo pins or flat leadframes – reviewing new cleaning media
• Absorber system may degrade over time and require repair/improvement
Strengths

• Excellent RF performance over a broad range of frequencies
• Long life
• Individual probe / lead frame replacement
• Multi-site capability (material CTE Match)
• Large compliance window
Weakness

- Complex to balance multiple contact technologies on one DUT
- Some limits on the number and location of RF signals
- In-situ cleaning is difficult
- May need maintenance on absorption system over time
Next Steps

• Project has moved to production and additional test cells are being deployed to meet end user demand! (13 probe heads shipped to date)

• Testing in-situ cleaning media and methods under investigation

• Testing life performance of absorption system (resolved)

• Better control of force on leadframes with modifications to support system (future projects)

• Have improved tolerance capabilities and geometries on leadframes

• Have implemented better PCB pad compatible geometries
Summary/Conclusion

• Advances in IC design architectures and contacting methods make high volume test of automotive radar RF devices production capable with test resources already available on production floors.

• Demonstrated Production worthy quad-site tri-temp Probecard solution for 77GHz automotive radar wafer test applications with BIST

• Thank you to NXP for the opportunity and collaboration to make it happen!
With Thanks to Our Sponsors!

Premier

Cohu

Emeritus

Johnstech®

Honored

ISC

WIN SOLUTION

TSE
With Thanks to Our Sponsors!

Distinguished

![Backer Hotwatt](image)

![Innovative Circuits Engineering](image)

![JMT](image)

![Nidec SV TCL](image)

![R&D Altanova](image)

![UI Green](image)

Exhibitor

![ELES](image)

![MJC](image)

![Phoenix Test Arrays](image)

![Smiths Interconnect](image)
With Thanks to Our Sponsors!

Industry Partners

- MEPTEC
- SWTEST

Publication Sponsor

- Chip Scale Review

TestConX™

Welcome - Virtual Event 2021
The Market Leader in Test Interface Solutions for the Most Challenging Applications
ELASTOMET SOCKET & INTERPOSERS
• High performance and competitive price
• High speed & RF device capability
• Various customized design to meet challenge requirement

POGO SOCKET SOLUTIONS
• Excellent gap control & long lifespan
• High bandwidth & low contact resistance

THERMAL CONTROL UNIT
• Extreme active temperature control
• Safety auto shut-down temperature monitoring of the device & thermal control unit
• Full FEA analysis & Price competitiveness

BURN-IN SOLUTIONS
• Direct inserting on the board without soldering
• Higher performance BIB solution
Spring probe by stamping

- Free Length (mm)
 0.15 ~ 0.25: 7.0
 0.25 ~ 0.35: 6.5
 0.35 ~ 0.45: 6.0
 0.45 ~ 0.55: 5.5
 0.55 ~ 0.65: 5.0

- Patented:
 Pitch (mm) | Free Length (mm) | Current Capacity (Ampere)
 0.15/0.25/0.35 | 2.17~ | 6.5~
 0.3 | 1.5~ | 1.5~
 0.35/0.45/0.55 | 2.08~ | 1.8~
 0.4 | 0.8~ | 2.0~
 0.45/0.55 | 1.6~ | 3.0~
 0.5 | 1.13~ | 4.0~
 0.55/0.65 | 3.14~ | 3.5~

- 250 kinds of spring probe pin
- 300 kinds of test socket (44,000 Pin count socket possible)
- One piece spring probe
- Three piece spring probe
- High speed product -> 0.63mm free length
- Spring probe pin available
- Finest Pitch -> 0.15mm Pitch

Spring probe pins for High speed

Automation
Pin assembly and Quality control

- Extremely short spring probes by stamping

Socket and Lid

- Design approach

Pin assembly (Fully automated machines)

- Stamped parts are attached to a reel and fed into the assembly machine
- Assembled pins can be attached to a reel, ready for socket assembly

Copyright ©2021 IWIN Co., Ltd all right reserved
Homepage. www.iwinsn.com Tel. +82-10-6417-7580 E-mail. aj@iwinsn.com

High Performance Probe solution