VIRTUAL EVENT

TestConX

Presentation Archive May 3-7, 2021

TestConX.org

© 2021 TestConX- Image: tonda / iStock

Big Data & Machine Learning For Customer Returns

Rahima Mohammed Sr Principal Engineer Intel Corporation

Virtual Event • May 3 - 7, 2021

Contents

- Problem Statement
- Proposed Solution
- Methodology
- Results
- Conclusions

Why worry about Defective Parts?

- EXECUTING TO Moore's Law
 Enabling new devices with higher functionality and complexity while controlling power, cost, and size
- The number of manufacturing defects are also increasing with decreasing wavelength of each semiconductor process generation

Test**ConX**

Hence, understanding the characterization of the defective units is very critical to improve the quality of the products delivered to the market

Traditional Commonality Analysis

 \rightarrow Leads to forced commonalities or overlooks the interactions between the processes

Test**ConX**

Methodology

How Customer Returns Lead To BIG DATA?

Customer Return (Unique Processor ID) \rightarrow Wafer Level Sort, Package level (Burn-in, Class, Binning, Fusing, System level validation, Quality assurance and packaging)

Trace Neighboring Parts

Same Lot	Neighboring Lots/wafers
Same Test program	Same conditions at each of the manufacturing tests at the various manufacturing sites

 Sort
 Class
 System Level

 Wafer Test
 Test (Package level)
 Validation

 Variables
 15K -60K
 3K- 15 K
 1K-3K

Examples: Parametric data (leakage, voltages, process monitors) and Attribute data (product characteristics, die position on the wafer, lot numbers, etc.)

One single part \rightarrow 19k to 78k of variables for only 3 of the Tests!

Test**ConX**®

Big Data & Machine Learning For Customer Returns

Unique

ID

Processor

Big Data Constituents

Test**ConX**®

Uncertainty in data

- Data inconsistency
- Incompleteness or missing data
- Ambiguities
- Latency
- Model approximations

~ Real time feedback necessary Sheer Volume of data to process

Variety

- Large diversity of data
- Structured (categorical and continuous)
- Semi-structured (categorical and textual)
- Non-structured data (video, audio and textual)

Data complexity

Decoding/transformation
 Different databases

Data Mining Goals

Find hidden pattern to explain the difference between the defective and non-defective parts

Feature Selection (FS)

Process of selecting a subset of relevant features (predictors) to reduce the variance and avoid over-fitting.

Test**ConX**®

Feature Selection helps to reduce the number of variables to the meaningful ones

m

Feature Selection reduces Matrix of space of $n \ge m \ge m \ge m$

Decision Trees Algorithms

observations (n)

Simple learning machine that partitions data to reduce variance using binary recursive partitioning algorithm

	Decis
Random Forest (RF)	tree T

Data Dimension Speed Very fast **Recommended when there** are more variables (x) than observations (n) Large number of

Gradient		
Boosting Tree		
(GBT)		

Test**ConX**®

Might get slow if #of

variables (x) is large

Dynamic Graphical User Interface

Dynamically explore graphically the potential variables that show the difference between defective and non-defective parts.

2D Scatterplots Variability Charts Variability Gauge Variability Chart for yield 160 140 weight 17.0 12015.0 100 ≣ 13.0-11.0 80 Ξ 9.0 Ŧ ж, 60 little lots little lots little 65 70 м small height gourmet **3D Scatterplots Box Plots** 25 20

lots

plain

lttie lots

smal

oil amt

batch

popcom

Test**ConX**®

Case Study

• Total of 6 defective parts were found at specific downstream operation step

Feature Selection

Feature Selection Chart using Interactive Data Exploration and Learning tool [IDEAL]

Variables	Importance	
defect_flag <response></response>		
Variable_1	100%	
Variable_2	91.14%	
Variable_3	46.76%	
Variable_4	43.73%	
Variable_5	37.75%	
Variable_10	14.17%	
F	negligible	

Test**ConX**®

Decision Tree: CART

Decision Tree Results Comparison

Relevant Variables Comparison by Decision Trees Algorithms

Algorithm	Relevant Variables
CART	Variable_2: 100% Variable_1: 24.48% Variable_10: 10.27%
GBT	Variable_4: 100% Variable_2: 76.80% Variable_1: 10.70%
RF	Variable_2: 100% Variable_1: 94.30% Variable_3: 58.80%

Test**ConX**®

All 3 different decision tree algorithms show variable 1 and variable 2 as part of the Top 3 relevant variables

12

Data Visualization

Test**ConX**®

Lower right quadrant \rightarrow Defective units fall as outliers of correlation between variable 2 and 1. Prompt feedback was sent to the manufacturing process step for corrective actions

Die Position @ Wafer Level

Defective parts were mostly distributed on wafer edges

TestConX[®]

Big Data & Machine Learning For Customer Returns

₄ 202

Summary

- 1. Save valuable time on the investigation and deliver results faster
- 2. Allow the user interactivity with the data and results
- 3. Evaluate the problem from different angles
- 4. Deliver intelligence on the causal mechanisms of the defective parts
- 5. Impact decisions on subsequent units

Test**ConX**®

With Thanks to Our Sponsors!

With Thanks to Our Sponsors!

With Thanks to Our Sponsors!

Cohu

The Market Leader in Test Interface Solutions for the Most Challenging Applications

Mobility

Precision Analog & Sensors

High End Digital

Automotive & Power

RF

ELASTOMET SOCKET & INTERPOSERS

- High performance and competitive price
- High speed & RF device capability
- Various customized design to meet challenge requirement

POGO SOCKET SOLUTIONS

- Excellent gap control & long lifespan
- High bandwidth & low contact resistance

THERMAL CONTROL UNIT

- Extreme active temperature control
- Safety auto shut-down temperature monitoring of the device & thermal control unit
- Full FEA analysis & Price competitiveness

BURN-IN SOLUTIONS

- Direct inserting on the board without soldering
- Higher performance BIB solution

CONTACT ISC CO., LTD **ISC HQ** Seong-nam, Korea **ISC International** Silicon-valley, CA Tel: +82-31-777-7675 / Fax: +82-31-777-7699 Email: <u>sales@isc21.kr</u> / Web: <u>www.isc21.kr</u>

WIN IWIN Co., Ltd.

The test probe for high signal integrity at extremely high speed test

Spring probe by stamping

250 kinds of spring probe pin

300 kinds of test socket (44,000 Pin count socket possible)

One piece spring probe

Three piece spring probe

High speed product → 0.63mm free length

spring probe pin available

Finest Pitch → 0.15mm Pitch

Spring probe by stamping

		Patented	
Pitch(mm)	Free Length(mm)	Current Carrying(Amps)	
0.15/0.2/0.25	2.17~	0.5~	
0.3	1.5~	1.5~	
0.35	2.08~	1.8~	
0.4	0.8~	2.5~	
0.5	1.5~	3.0~	
0.65	1.13~	9.0~	
0.8	3.14~	3.0~	

Automation Pin assembly and Quality control

pins socket

Top Figure: Socket CRES, Force, Stroke test Bottom Figure: Data displayed

Socket and Lid

(by IWIN)

- Stamped piece parts attached to a

reel fed into the assembly machine

Bottom Figure: Data display 5,903

Pin assembly

(Fully automated machines)

Spring probe pins for High speed

Extremely short spring probes by stamping

One piece spring prob **Design approach**

0.50

00.32

Insertion Loss - HPSP28063F1-01

Return Loss - HPSP28063F1-01 0.00 -10.00 62.01GHz -20.00 -30.00 -40.00 -50.00 Curve Info dB(St(Dim),Dim)) -60.0 -70.00 0.00

SOLUTION

Copyright©2021 IWIN Co.,Ltd all right reserved Homepage. www.iwinsn.com Tel. +82-10-6417-7580 E-mail. aj@iwinsn.com

High Performance Probe solution

COPYRIGHT NOTICE

The presentation(s)/poster(s) in this publication comprise the proceedings of the 2021 TestConX Virtual Event. The content reflects the opinion of the authors and their respective companies. They are reproduced here as they were presented at the 2021 TestConX Virtual Event. The inclusion of the presentations/posters in this publication does not constitute an endorsement by TestConX or the workshop's sponsors.

There is NO copyright protection claimed on the presentation/poster content by TestConX. However, each presentation/poster is the work of the authors and their respective companies: as such, it is strongly encouraged that any use reflect proper acknowledgement to the appropriate source. Any questions regarding the use of any materials presented should be directed to the author(s) or their companies.

"TestConX" and the TestConX logo are trademarks of TestConX. All rights reserved.

