October 27 – 29, 2020
Virtual Event
Archive
www.testconx.org
ATE Challenges on Sub-6G PA

Norris Wang, Wei Xu, Takumi Hayashi, & Zhiqiang Bai
ADVANTEST

Virtual • October 27-29, 2020
Contents

• Introduction
 – Background
 – Device information

• Engineering
 – Overview of test program
 – Correlation

• Production
 – Release Correlation

• Conclusion
Introduction

Background

- Sub-6G RF TRX system is hot-spot in 5G communication. Compared to mm-wave band (FR2), Sub-6G (FR1) band has a lower power consumption and larger cover range. Compared to 3G/4G Front End Module (FEM), Sub-6G FEM also brings challenges like obvious occupied band-width increase (10M/20MHz->100/200MHz), higher order modulation (64QAM -> 256QAM) while the efficiency of Sub-6G Power Amplifier is reduced fiercely.

- In real sub-6G PA cases, one largest challenge is the thermal degradation which is caused by extremely low PAE (Power Added Efficiency). In the slides, it will show how to overcome difficulties to reduce cost and improve stability without hardware change.

- In the other hand, strict correlation criteria are necessary in both engineering and production. Consistency and continuity need achieve among testers to guarantee the Quality. By dedicated calibration design, all these Challenges are tackled.
Introduction

- Device information

- Device Band Support:

<table>
<thead>
<tr>
<th>Band</th>
<th>Downlink/Uplink(GHz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>N77</td>
<td>3.30 – 4.20</td>
</tr>
<tr>
<td>N78</td>
<td>3.30 – 3.80</td>
</tr>
<tr>
<td>N79</td>
<td>4.40 – 5.00</td>
</tr>
</tbody>
</table>
Device information

<table>
<thead>
<tr>
<th>Test item</th>
<th>N77/N79</th>
</tr>
</thead>
<tbody>
<tr>
<td>Idle ICC</td>
<td>L/M/H</td>
</tr>
<tr>
<td>Active ICC</td>
<td>L/M/H</td>
</tr>
<tr>
<td>ACLR</td>
<td>L/M/H</td>
</tr>
<tr>
<td>EVM</td>
<td>L/M/H</td>
</tr>
<tr>
<td>PAE</td>
<td>L/M/H</td>
</tr>
<tr>
<td>Insert loss</td>
<td>L/M/H</td>
</tr>
<tr>
<td>Gain</td>
<td>L/M/H</td>
</tr>
<tr>
<td>Power Out</td>
<td>L/M/H</td>
</tr>
<tr>
<td>CPL</td>
<td>L/M/H</td>
</tr>
<tr>
<td>Switch time</td>
<td></td>
</tr>
</tbody>
</table>

Each test item will be tested in different modulation waveforms.

Introduction

Different Gain Mode from Low to High.
Engineering

• Overview of test program
 – Part of the test condition of RF test items

<table>
<thead>
<tr>
<th>Test items</th>
<th>Voltage</th>
<th>RF power</th>
</tr>
</thead>
<tbody>
<tr>
<td>Idle ICC</td>
<td>0.8–5.0V</td>
<td>-</td>
</tr>
<tr>
<td>Active ICC</td>
<td>0.8–5.0V</td>
<td>> 25dBm</td>
</tr>
<tr>
<td>ACLR/Gain/EVM</td>
<td>0.8–5.0V</td>
<td>> 25dBm</td>
</tr>
</tbody>
</table>

From the test condition, it shows the device temperature rise quickly with the voltage and power out. Compared to 3G/4G PA TX module (TXM), in most of the case, device PAE is very low, just half of 3G/4G PA devices. In the following slides, it is shown deeply influence on the correlation.

ATE Challenges on Sub-6G PA

3G/4G PA PAE: Much better

Sub-6G PA PAE: Extremely low

2020
Engineering

• Correlation
 – Environment compare

<table>
<thead>
<tr>
<th>Equipment</th>
<th>ATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>DC</td>
<td>DPS64/DPS128 – V93K</td>
</tr>
<tr>
<td>RF</td>
<td>WSRF – V93K</td>
</tr>
<tr>
<td>Socket</td>
<td>Exists</td>
</tr>
<tr>
<td>PCB</td>
<td>LB – Quad Sites</td>
</tr>
<tr>
<td>Connection</td>
<td>RFIM6(V93K)->SMP->LB->Socket</td>
</tr>
<tr>
<td>Control</td>
<td>PS1600 – V93K</td>
</tr>
<tr>
<td>Attenuator</td>
<td>Attenuator</td>
</tr>
</tbody>
</table>

ATE test environment established on the latest ADVANCE® SmarTest8 (SW) and V93000 tester (HW).

Compared to application or evaluation environment, ATE test environment works with higher density, shorter time, worse heat dissipation, multiple RF connectors and attenuator.
Engineering

- Correlation
 - Engineering correlation criteria from evaluation:

<table>
<thead>
<tr>
<th>Test item</th>
<th>Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Idle ICC</td>
<td><10mA</td>
</tr>
<tr>
<td>Active ICC</td>
<td><20mA</td>
</tr>
<tr>
<td>ACLR</td>
<td>ACLR1<0.3dB(~30dB)</td>
</tr>
<tr>
<td></td>
<td>ACLR2<1dB(~40-60dB)</td>
</tr>
<tr>
<td>EVM</td>
<td><0.1%</td>
</tr>
<tr>
<td>Gain</td>
<td><0.3dB</td>
</tr>
<tr>
<td>Power Out</td>
<td><0.2dB</td>
</tr>
</tbody>
</table>
Engineering

• Correlation
 – ICC calibration can not reach convergence

1. It supposes that target Power Out and target Active ICC can meet our calibration requirement error within twenty times modification of Outloss.
2. Most of Gold Units behave like that less than 10 times. Normal GUs ICC delta will reach to the minimum gap less than 1mA.
3. There are exceptional GU. The exception GU start swings around the [-20,20]mA.
Engineering

- Correlation
 - ICC calibration can not reach convergence

This slope works well when PA device is in "Linear Area". However if the Power Out is close to "Non-Linear Area" (NLA), this formula doesn't work. Solution: set the adjust of stim power to constant when close to NLA:

```
If (adjust >= 0){
  stim power += 0.15dB}
Else{
  stim power -= 0.1dB}
```

It will help Active Icc close to target Current from one side and avoid swings.
Engineering

• Correlation
 – Same Frequency Calibration Outloss Difference

<table>
<thead>
<tr>
<th>Frequency</th>
<th>Real Loss</th>
<th>Normal Loss</th>
<th>Abnormal Delta</th>
</tr>
</thead>
<tbody>
<tr>
<td>N77, N79</td>
<td>Around 3dB</td>
<td>Around 3dB</td>
<td>>5dB</td>
</tr>
</tbody>
</table>

As it shows, the PA has different Gain power mode and different waveforms. It could use different power mode target Power Out and Active ICC as reference. However Out Loss result is with much difference as above.

It’s found that ICC/Target Out calibration has an important necessary condition: Calibration result should be getting at considerable PAE. Lower PAE means even with different Power Out, their Active ICC are close to same value.
Engineering

• Correlation
 – Overcome Heat dissipation problem of PA

In some cases, PA Active current was over than 1A without any additional heat dissipation method. Some version of Reg config IDLE ICC was very large, too. Compared to EVB, Idle ICC (quiescent current) in socket can not keep a stable current.

<table>
<thead>
<tr>
<th>Test condition</th>
<th>EVB - ATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loop test 50 times</td>
<td>0-10mA</td>
</tr>
<tr>
<td>Debug stop 1s test</td>
<td>~100mA</td>
</tr>
<tr>
<td>Power off 3s then test</td>
<td>0-10mA</td>
</tr>
</tbody>
</table>

Generally RF PA is typical Class-(A/B/C) amplifier. Bias current is one of the most important index. If the quiescent current is not same, it means that the test conditions are completely different and the nonlinear effect is enhanced. It is difficult to do correlation.
Engineering

• Correlation
 – Overcome Heat dissipation problem of PA
 When the temperature of the conductive particles increases, the thermal motion intensifies, and in the PN junction of the semiconductor, conductive particles becomes more and more uncontrolled, resulting in some reduction in the quiescent current bias.

 The register configuration and level setting were completed at time t1. The following three test items are not set configure. In other words, PA has been heating and processing performance degradation since t1 Idle ICC test.
Engineering

• Correlation

 – Overcome Heat dissipation problem of PA

 Solution:
 After finishing the RF Meas action, configure PA OFF register immediately, which takes about ms level of time. It helps reduce PA temperature before the following test items.
 This solution is called as “Reg APT” since it looks like “APT” with a little difference.
Engineering

• Correlation
 – Overcome Heat dissipation problem of PA

- Correlation
 - Overcome Heat dissipation problem of PA

No Stim
Idle ICC

VCC

waveform

Normal Active ICC

VCC

APT

VCC

Reg_APT

PA_OFF

VCC

PA_OFF*
Production

- **Release Correlation**

 - Multiple Prog Versions
 - Between Prog versions
 - Multiple Testers
 - Between Testers and Sites

 Strict correlation and production quality are guarantee!

<table>
<thead>
<tr>
<th>Test Item</th>
<th>Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Idle ICC</td>
<td><10mA</td>
</tr>
<tr>
<td>Active ICC</td>
<td><30mA</td>
</tr>
<tr>
<td>ACLR</td>
<td>ACLR1 < 0.5dB</td>
</tr>
<tr>
<td>EVM</td>
<td><0.3%</td>
</tr>
<tr>
<td>Gain</td>
<td><0.1dB</td>
</tr>
<tr>
<td>Power Out</td>
<td><1.2dB</td>
</tr>
</tbody>
</table>

Dedicated solution is necessary to guarantee strict correlation and production quality.
Production

• Release Correlation
 – How to maintain the robustness of test results

GU groups selection: Select GU groups with high consistency to replace a single GU.

Using the GU group to simultaneously calibrate on the quad site and multi-testers to ensure stability and greatly improve efficiency.

GU reference iteration: The golden lot data tested during first release is used as the golden data.

In case program version updated, the reference value of the GU group is also iterated synchronously to ensure the consistency of the test data.
Production

- Release Correlation
 - How to maintain the robustness of test results

Group Gu calibration between testers and sites. Great efficiency and stability.
All these operations will be done by Software and Tester automatically.

Each site with more than 10 pcs calibration GUs
Each GU will run on one site more than 10 times.
Production

• Release Correlation
 – How to maintain the robustness of test results

- GU reference value calibration
- R0' Program
- R1' Program
- R2' Program
- Golden Lot
- R0' Golden Lot report
- R1' Golden Lot report
- R2' Golden Lot report
- Delta between R0' R1' report
- Delta between R1' R2' report
Production

- Release Correlation
 - How to maintain the robustness of test results
 Golden Lot samples must be well preserved.
 Generally the test results of 1000+ chips should not change significantly.
 Golden Lot report produced by each program version and different tester should be same.

Despite of addition test items as well as the hardware degradation, it guarantees Consistency and continuity by using group GU and GU value iterations.
Conclusion

According to the above real cases, by Advantest 93K SMT8 test platform, it solves:

- Device heating testing
- Current Non-convergence
- Calibration difference

And

- Improving Hardware re-usage
- Guaranteeing consistency and continuity
Test Tooling Solutions Group

TTS Group is dedicated to bring the best possible testing solutions to our customers and to help solve some of the most challenging issues in test and tooling today.

Total headcount of 400 specialists

Total production area of 400,000 sqft. for Probe Pin and Socket operations

Total investment of USD 75 Million
COPYRIGHT NOTICE

The presentation(s)/poster(s) in this publication comprise the proceedings of the TestConX China 2020 virtual event. The content reflects the opinion of the authors and their respective companies. They are reproduced here as they were presented at TestConX China. The inclusion of the presentations/posters in this publication does not constitute an endorsement by TestConX or the workshop’s sponsors.

There is NO copyright protection claimed on the presentation/poster content by TestConX. However, each presentation/poster is the work of the authors and their respective companies: as such, it is strongly encouraged that any use reflect proper acknowledgement to the appropriate source. Any questions regarding the use of any materials presented should be directed to the author(s) or their companies.

TestConX, TestConX China, the TestConX logo, and the TestConX China logo are trademarks of TestConX. All rights reserved.

www.testconx.org