Session 6 Presentation 3

Creative Checking - Validation

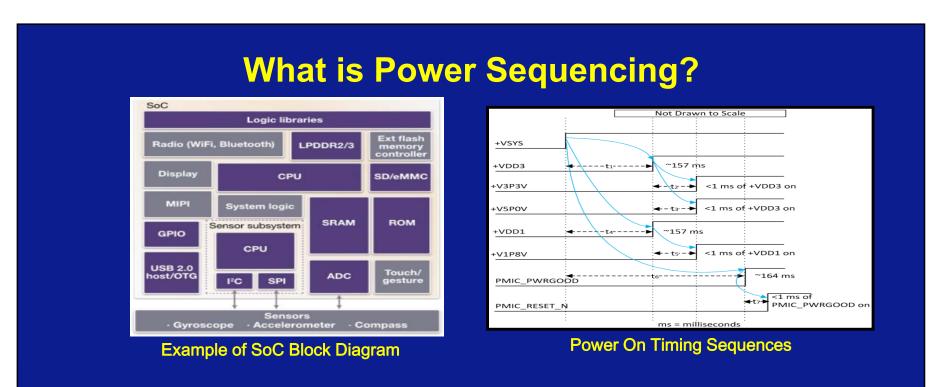
99% Validation Efficiency through Cloud Power Sequencing

Angie Ng See Tien Seong Guan Ooi Intel Corporation

Virtual Event • May 11-13, 2020

Session 6 Presentation 3

Creative Checking - Validation


Contents

- What is Power Sequencing
- Problem Statements
- Objectives
- Solution Overview
- Impact of Cloud Power Sequencing
- Summary
- Acknowledgements

Creative Checking - Validation

- Measure Power On and Power Down timings and Voltages
- Critical to ensure products functionality

TestConX[™] 99% Validation Effic

99% Validation Efficiency through Cloud Power Sequencing

³ 2020

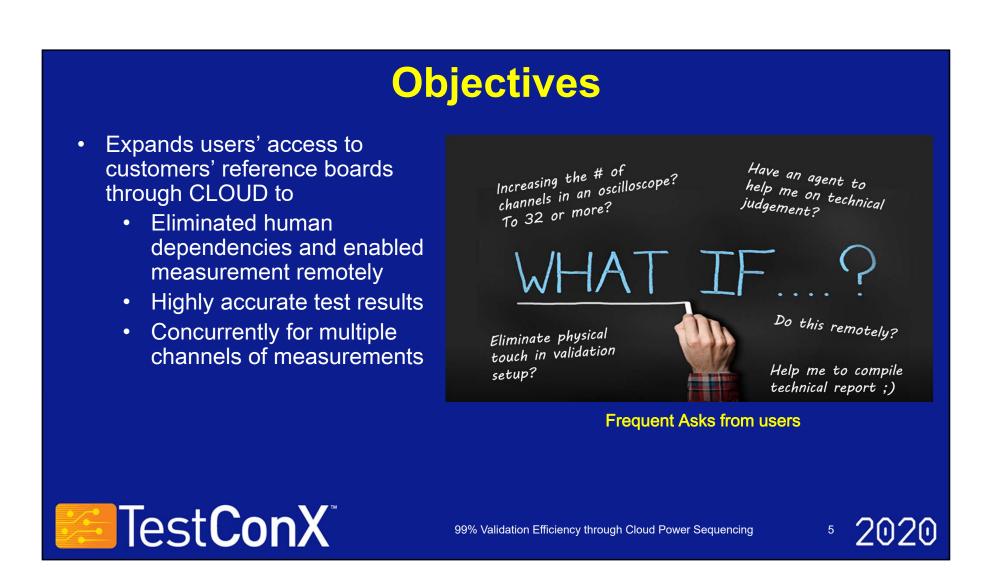
Creative Checking - Validation

Problem Statement

- Cost to perform power sequencing test
 - 4 x Tektronix MSO58 scope = \$140,000
 - Power sequencing test time = 5 hours/test
 - Engineer/technician involved = 2 heads
 - Characterization method = manual
 - Result accuracy = vary by person/skills

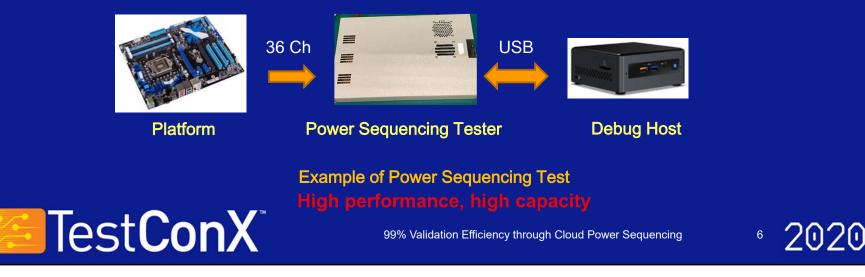
- Disadvantages:

- Slow
- High cost
- Inaccurate
- In-depth technical skills required
- Physical touch required


Estimation of Performing Power Sequencing Test

Session 6 Presentation 3

Creative Checking - Validation



TestConX Workshop

Solution Overview

Power Sequencing Tester serve as a multi-channel oscilloscope that

- Software : Applying FPGA (Field Programmable Gate Array) & Verilog scripting for the automation.
- Hardware Design : 36 probers & 4 GNDs are connected to platform to measure voltage and timing requirements.
- Dashboard : Graphical User Interface (GUI) is developed to allow easy entry of power rules, voltage specification. The graphs are plotted after post processing.
- Test Report : test results can be retrieved from debug host and report out as pass/fail in html/Pdf format.

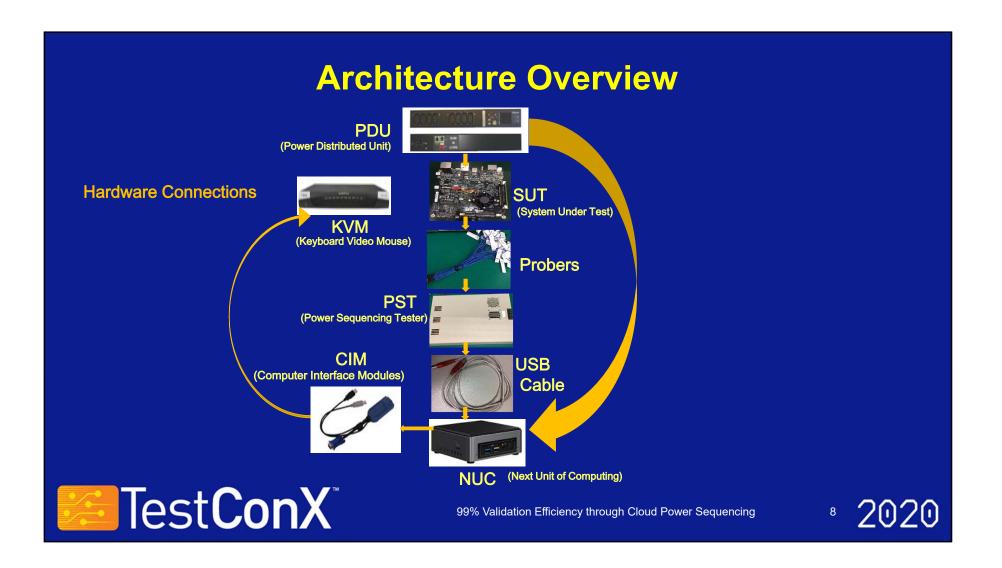
Creative Checking - Validation

Architecture Overview

- KVM & PDU is to enable remote access and power cycling.
- NUC is connected to KVM via CIM cable.
- NUC can be configured as Virtual Machine.

PST Solution Specifications:

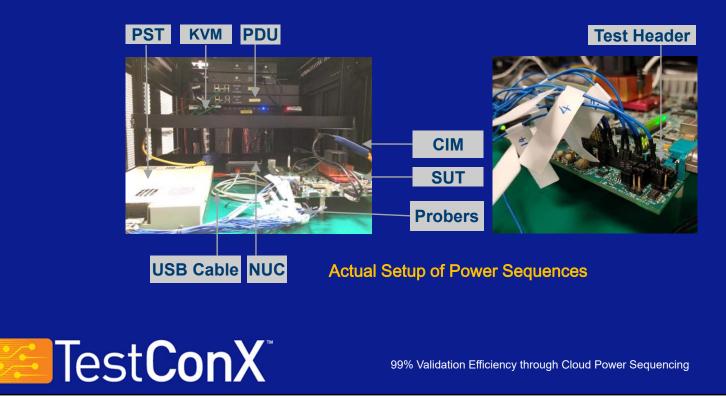
- 36 simultaneous measurement channels
- 8-bit resolution/channel
- Sampling rate at 1M/second/channel
- Input impedance @ $1M\Omega$
- 3 voltage range (0-5V, 0-20V, +/-10V)
- · Stored up to 1min of measurement data
- Single channel edge triggering (rising/falling), with adjustable threshold and selectable channel



Session 6 Presentation 3

TestConX 2020

Creative Checking - Validation



TestConX Workshop

Creative Checking - Validation

Architecture Overview

- NUC can be configured as Virtual Machine (VM).
- VM is connecting to Cloud Environment to enable maximum efficiency.

Session 6 Presentation 3

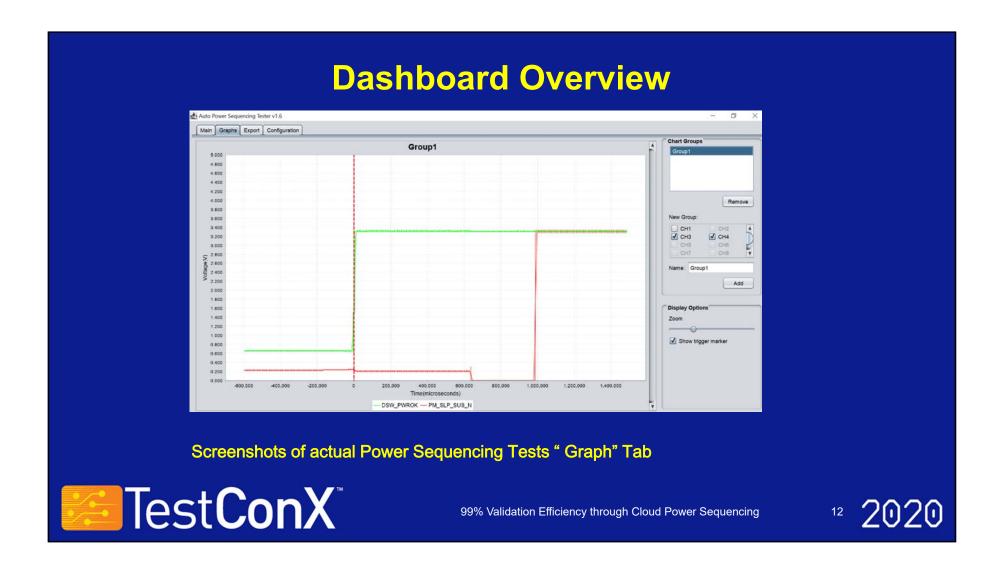
TestConX 2020

Creative Checking - Validation

Dashboard Overview

Screenshots of actual Power Sequencing Tests " Main Tab

TestConX®


Creative Checking - Validation

	phs Export Con										_		
Channe	I Setup and Volta	VRange	Enable	Trigger	Threshold	Edge	Offset(s)	Avg.Win	d Lower Li.	Upper Li			
	5 SYS_PWROK 6 GND 7 SRTC_RST_N 8 +V1.8A 9 RTC_RST_N 10 VCCIN 11 12	0-5V 0-5V 0-5V 0-5V 0-5V 0-5V 0-5V 0-5V			3.3 3.3 3.3 3.0 1.8 3.3 3.3 3.3	Rising Rising Rising Rising Rising Rising Rising	Oms Oms Oms Oms Oms Oms Oms Oms Oms	0ms 0ms 0ms 0ms 0ms 0ms 0ms 0ms 0ms	2.5 2.5 2.5 2.0 0.5 2.5 2.5	4.0 4.0 4.0 4.0 3.0 4.0 4.0 4.0	5		
Timing I	Rules Name	Start at(s)	1st Chan	1st Edge	2nd Chan	2nd Edge	Lower Limit(s			Delete r 2nd edge after 1st edge			
1	Test	0ms	9	Rising	10	Rising	10ms	10	ms				
Trigger P	osition: 1 🛉	6							Open	Save			

Session 6 Presentation 3

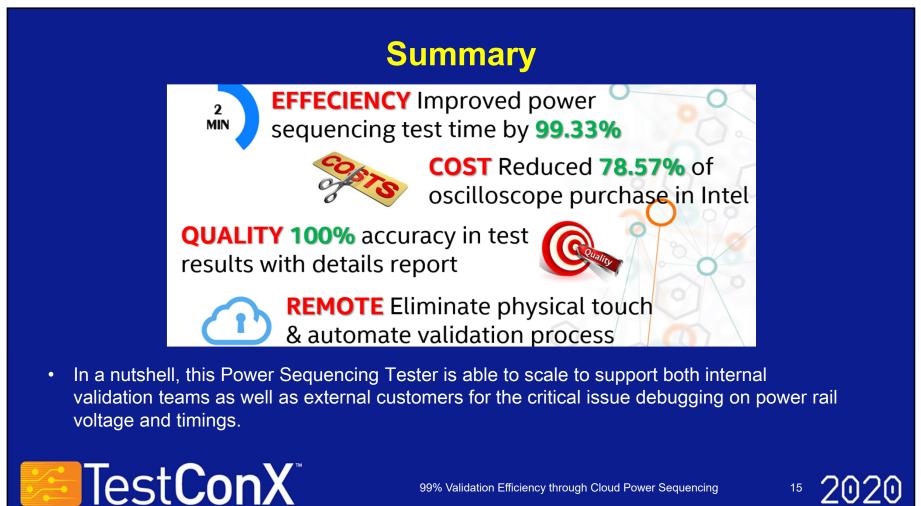
Creative Checking - Validation

Creative Checking - Validation

		Power Sequencing	Fester Report
oftware Version: 1.6 reation Date: 2020-01-14T14:22:46.7301587+0 onfig file: C:\Users\WorkStation 1\Desktop\PST verall result: Pass oltage check result: Pass iming check result: Pass			
oltage checking rules and results			
han #Name Meas. Voltage Range/Channel Er RTC_RST_N 0.5V True DSW_PWROK 0.5V True PM_SLP_SUS_N0-3V True	Time 1.5V Rising 10.0000 True 1.5V Rising 10.0000 True 1.5V Rising 10.0000 False 1.5V Rising 10.0000	ms 10.0000ms 2.5V 4.0V	Imit Measured value Result Fail reasor 2.097V PASS 3.314V PASS 3.307V PASS
iming checking rules and results			
ule #Name Start checking from From ChannelFrom Cl tPCH32 -1.0000ms 3 Rising		ver LimitUpper Limit2nd edge only after 1st edg 0000ms 5.0000s true	eMeasured value Result Fail reason Cl 1.0212s PASS

Creative Checking - Validation

Impact of Cloud Based Remote Debug


Components	Before	After	Improvements
Hardware Cost	\$140,000	\$30,000	78.57%
Test Time	5 hours/test	2 minutes	99.33%
Headcount	2 heads	0 heads	100.00%
Characterization Method	Manual	Systematic	100.00%
Result Accuracy	Vary by person/skills	Systematic	100.00%

- Better customer engagement & collaboration: Solution will be offered to Intel's customers as part of features in Cloud Based Remote Debug infrastructure
- Competitive advantage through IP: All SoC (System On Chip) designers performed power sequencing test

Creative Checking - Validation

Creative Checking - Validation

Acknowledgements

- Eric Chan VP in Intel IoTG (Internet of Thing Group)
- Board of Directors in Intel Malaysia Design Center (MDC)
- Ng, Hooi Ching IT Malaysia Hub Manager
- Goh, Kean Hean Engineering Lab Manager
- Ooi, Seong Guan Post-Silicon Technologist & Product Owner

99% Validation Efficiency through Cloud Power Sequencing

TestConX Workshop

www.testconx.org

May 11-13, 2020

Creative Checking - Validation

COPYRIGHT NOTICE

The presentation(s)/poster(s) in this publication comprise the proceedings of the 2020 TestConX Virtual Event. The content reflects the opinion of the authors and their respective companies. They are reproduced here as they were presented at the 2020 TestConX Virtual Event. The inclusion of the presentations/posters in this publication does not constitute an endorsement by TestConX or the workshop's sponsors.

There is NO copyright protection claimed on the presentation/poster content by TestConX. However, each presentation/poster is the work of the authors and their respective companies: as such, it is strongly encouraged that any use reflect proper acknowledgement to the appropriate source. Any questions regarding the use of any materials presented should be directed to the author(s) or their companies.

"TestConX" and the TestConX logo are trademarks of TestConX. All rights reserved.

www.testconx.org

TestConX Workshop