TWENTIETHANNUAI

estConX

March 3 - 6, 2019

Hilton Phoenix / Mesa Hotel Mesa, Arizona

Archive

COPYRIGHT NOTICE

The presentation(s)/poster(s) in this publication comprise the proceedings of the 2019 TestConX workshop. The content reflects the opinion of the authors and their respective companies. They are reproduced here as they were presented at the 2019 TestConX workshop. This version of the presentation or poster may differ from the version that was distributed in hardcopy & softcopy form at the 2019 TestConX workshop. The inclusion of the presentations/posters in this publication does not constitute an endorsement by TestConX or the workshop's sponsors.

There is NO copyright protection claimed on the presentation/poster content by TestConX. However, each presentation/poster is the work of the authors and their respective companies: as such, it is strongly encouraged that any use reflect proper acknowledgement to the appropriate source. Any questions regarding the use of any materials presented should be directed to the author(s) or their companies.

"TestConX" and the TestConX logo are trademarks of TestConX. All rights reserved.

Beyond Sort, Burn-In, and Class Testing: Post-Silicon Validation Hardware Strategy

John Kelbert, Tony Chao, Amy Xia Intel Corporation

1

Goal

- Introductory tutorial covering systems, sockets, and thermal tools used in post-silicon Functional Validation along with the challenges and solutions to satisfy Validation requirements.
- Attendees should be familiar with the silicon product manufacturing test flow and have a basic understanding of post-silicon functional validation.

Beyond Sort, Burn-In, and Class Testing: post-silicon Validation Hardware Strategy

4

Objectives

This tutorial will provide attendees with a basic understanding of:

- The different types of post-silicon validation
- The goals of Functional Validation and types of HW used
- How validation differs from manufacturing test
- Types of sockets and thermal tools used by Functional Validation
- Challenges with managing Functional Validation scope and optimizing hardware strategies
- Challenges with development of high-power measuring solutions, socketing of large BGAs, and Thermal tools for high power/low temperature components

Beyond Sort, Burn-In, and Class Testing: post-silicon Validation Hardware Strategy

- Manufacturing Test
- What is Validation
- Validation vs Burn-in
- Types of Post-silicon Hardware
- Post-silicon Validation Sockets
- Post-silicon Validation Thermal Test Systems
- Types of Post-silicon Validation

Beyond Sort, Burn-In, and Class Testing: post-silicon Validation Hardware Strategy

Beyond Sort, Burn-In, and Class Testing: Post-Silicon Validation Hardware Strategy

Beyond Sort, Burn-In, and Class Testing: Post-Silicon Validation Hardware Strategy

Beyond Sort, Burn-In, and Class Testing: Post-Silicon Validation Hardware Strategy

Validation Definition

Methodology to confirm that a component's design exactly matches its functional specifications

Beyond Sort, Burn-In, and Class Testing: post-silicon Validation Hardware Strategy

17

- Validation assures components meet:
 - Applicable end-user use case requirements
 - Architectural design specification
 - Industry specifications (Example: USB, PCIe)
 - Internal specifications for proprietary interfaces

Beyond Sort, Burn-In, and Class Testing: post-silicon Validation Hardware Strategy

18

Beyond Sort, Burn-In, and Class Testing: Post-Silicon Validation Hardware Strategy

Beyond Sort, Burn-In, and Class Testing: Post-Silicon Validation Hardware Strategy

- Common types of sockets in post-silicon Validation
 - Stamped and formed pin sockets, elastomer sockets, spring pin sockets
- Substrate
 - Stamped and formed pin socket, BGA
- Environment
 - OEM products, HVM Testing (Burn-in and Class), Post-Silicon Validation Testing
- Application
 - CPU, GPU, Chipset, Memory, ASIC, Modem, FPGA, Interposer

Beyond Sort, Burn-In, and Class Testing: post-silicon Validation Hardware Strategy

45

Spring Pin Socket

Socket is not soldered to board but assembled by alignment pins

Test**ConX**

- Very high reliability (up to 500 K cycles insertion / extraction)
- Primarily used in High Volume Manufacturing Testing
- Relatively high stroke and working range

Beyond Sort, Burn-In, and Class Testing: post-silicon Validation Hardware Strategy

47

Elastomer Socket

Socket is not soldered to board but assembled by alignment pins

Test**ConX**®

- Pins consist of metal particles in an elastomer matrix
- Relatively low cost
- Extremely low height
- Can be customized to mixed pitch
- Primarily used in post-silicon Validation

Beyond Sort, Burn-In, and Class Testing: post-silicon Validation Hardware Strategy

48

Tradeoff: Surface Mounted vs Socketed BGA Packages for Post-Silicon Validation

Advantage (Green) / Disadvantage (Red)	Surface Mounted BGA	Socketed BGA
Swap out defective silicon	No	Yes
Swap out different steppings of silicon	No	Yes
Save costs and lead time of expensive test boards	No	Yes
Unlock silicon from the board (<i>important when early silicon steppings have low yield</i>)	Νο	Yes
Extra flexibility in configuration capability when using different interposers between silicon and board	Νο	Yes
Large socket retention forces increase with pin count	No	Yes
Large socket retention forces increase with large package warpage	Νο	Yes
Extra collateral needed to design socket retention mechanisms	Νο	Yes
High electric current capability	Lower risk	Higher risk

Beyond Sort, Burn-In, and Class Testing: post-silicon Validation Hardware Strategy

50

Beyond Sort, Burn-In, and Class Testing: Post-Silicon Validation Hardware Strategy

Agenda

- What is a Thermal Test System
- Thermal Test System Applications
- Examples of Thermal Test Systems

Beyond Sort, Burn-In, and Class Testing: post-silicon Validation Hardware Strategy

52

Beyond Sort, Burn-In, and Class Testing: post-silicon Validation Hardware Strategy

53

54

Post Silicon Validation Thermal Hardware Scope					
	Power	High Power	Low power		
	Thermal Head and				
ret	retention				
	Test(Beyond Sort, Burn-In, and Class To	esting: post-silicon Validation Hardware Strategy 56	YEARS YEARS	

Beyond Sort, Burn-In, and Class Testing: Post-Silicon Validation Hardware Strategy

- Objectives
 - Verify end-user Use Cases and Requirements
 - Correctness to Engineering Design Specification
 - Test to Industry Specifications

Goal: Ensure products meet functional design specifications

Beyond Sort, Burn-In, and Class Testing: post-silicon Validation Hardware Strategy

60

Synthetic Platforms

Additional memory, PCH, and CPU I/O

Small percentage of platforms used

Flexible PCH HSIO configurability

configurations not covered by the RP

Functional Validation Hardware

Reference Platform (RP)

- Runs the majority of test content: Use Cases; instruction set; stress testing; concurrency; some memory types and configurations
- Used for the majority of debug
- Limited memory and I/O capability

TestConX Workshop

Beyond Sort, Burn-In, and Class Testing: post-silicon Validation Hardware Strategy

61

- Objectives
 - System level testing of components
 - Complete SW stack: OS, drivers, applications, firmware (FW)
 - Memory management
 - Strategic I/O configurations
 - Platform power management

Beyond Sort, Burn-In, and Class Testing: post-silicon Validation Hardware Strategy

66

Beyond Sort, Burn-In, and Class Testing: Post-Silicon Validation Hardware Strategy

- Legacy Post-silicon Hardware Solution
- What Changed
- Managing Scope
- Options to Manage Change
- Challenges Confronting the New Solutions

Beyond Sort, Burn-In, and Class Testing: post-silicon Validation Hardware Strategy

69

Beyond Sort, Burn-In, and Class Testing: Post-Silicon Validation Hardware Strategy

Challenges Post-Silicon Hardware

Validation's goal: Full functional test of silicon to its specifications

Beyond Sort, Burn-In, and Class Testing: post-silicon Validation Hardware Strategy

71

Challenges Post-Silicon Hardware

Validation's goal:

Full functional test of silicon to its specifications

A hardware solution should provide:

- Complete operational coverage of component capability
- Full temperature/thermal and voltage range
- Socket component to remain portable across test platforms
- Optimize the number of system designs
- Provide all systems at silicon power-on

Beyond Sort, Burn-In, and Class Testing: post-silicon Validation Hardware Strategy

www.testconx.org

Beyond Sort, Burn-In, and Class Testing: Post-Silicon Validation Hardware Strategy

www.testconx.org

Beyond Sort, Burn-In, and Class Testing: Post-Silicon Validation Hardware Strategy

Beyond Sort, Burn-In, and Class Testing: Post-Silicon Validation Hardware Strategy

79

Beyond Sort, Burn-In, and Class Testing: Post-Silicon Validation Hardware Strategy

Beyond Sort, Burn-In, and Class Testing: Post-Silicon Validation Hardware Strategy

81

Beyond Sort, Burn-In, and Class Testing: Post-Silicon Validation Hardware Strategy

www.testconx.org

Beyond Sort, Burn-In, and Class Testing: Post-Silicon Validation Hardware Strategy

Beyond Sort, Burn-In, and Class Testing: Post-Silicon Validation Hardware Strategy

84

Beyond Sort, Burn-In, and Class Testing: Post-Silicon Validation Hardware Strategy

Beyond Sort, Burn-In, and Class Testing: Post-Silicon Validation Hardware Strategy

TestConX Workshop

www.testconx.org

March 3-6, 2019

Beyond Sort, Burn-In, and Class Testing: Post-Silicon Validation Hardware Strategy

99

Beyond Sort, Burn-In, and Class Testing: Post-Silicon Validation Hardware Strategy

www.testconx.org

105

- Challenge: <u>Memory Configurations</u>
 - 2 physical DIMM spacing (0.4", 0.65")
 - 3 physical DIMM DQ/DQS lengths
 - 4 different memory types (UDIMM, RDIMM, LRDIMM, SODIMM)
 - 7 memory densities (4, 8, 16, 32, 64, 128, 256 GB)
 - 7 memory speeds
 - 6 memory channels
 - Configurations: 1 DIMM/ch; 2 DIMM/ch; 4 DIMM/ch

Beyond Sort, Burn-In, and Class Testing: post-silicon Validation Hardware Strategy

107

Beyond Sort, Burn-In, and Class Testing: Post-Silicon Validation Hardware Strategy

Beyond Sort, Burn-In, and Class Testing: Post-Silicon Validation Hardware Strategy

118

130

Result

- A "build everything and anything" approach will not scale with the number of configurations a given product can support and the number of products to be launched
 - Cost:
 - Negative impact to product profitability
 - Schedule:
 - Lead time to develop and deploy validation HW was high relative to silicon product development
 - Resources:

Test**ConX**

• Staffing for development and validation must be realistic

Beyond Sort, Burn-In, and Class Testing: post-silicon Validation Hardware Strategy

134

Augment Reference Platforms

• Apply new capability to augment RP with interposers that added functionality without impacting its design

Source: intel

Purpose Built hardware to accomplish validation

Beyond Sort, Burn-In, and Class Testing: post-silicon Validation Hardware Strategy

136

Enable Modular Design

Solution Strategy: The methodology is to split up the design elements and standardize the interfaces. Modular design allows the modules within an assembly to be replaced without redesigning the assembly completely.

Benefit of modularization:

- Enable parallel work
- Eliminate waste by increasing reusability
- Reduce cost by reducing the design resource and new tools ordering
- Shorten time to market by simplifying design work to support 2x or 5x more silicon testing
- Accommodate future package derivatives

Test**ConX**

Beyond Sort, Burn-In, and Class Testing: post-silicon Validation Hardware Strategy

140

Beyond Sort, Burn-In, and Class Testing: Post-Silicon Validation Hardware Strategy

Beyond Sort, Burn-In, and Class Testing: Post-Silicon Validation Hardware Strategy

Summary

- We have looked at how an expanding product portfolio and shrinking process have made legacy hardware methodologies obsolete for Post-Silicon Functional Validation
- The higher levels of integration, enabled by shrinking process, have demanded a shift in hardware strategies that support today's silicon products
- While HW strategies have become more efficient, the continuing trend of higher current, higher power, and larger packages have brought a new set of challenges which will be explored through case studies that follow.

Beyond Sort, Burn-In, and Class Testing: post-silicon Validation Hardware Strategy

Beyond Sort, Burn-In, and Class Testing: Post-Silicon Validation Hardware Strategy

www.testconx.org

Agenda

- The Importance of Power Measurement
- Ideal Solution
- Initial Strategy Recap
- Interposer Approach
- Trends and Challenges to >340 A
- Exploratory Solution
- Summary

Beyond Sort, Burn-In, and Class Testing: post-silicon Validation Hardware Strategy

49 (⁸(.2

www.testconx.org

www.testconx.org

www.testconx.org

Power Measurement Ideal Hardware Solution

- Fully integrated into the component power delivery solution of a Reference Platform (RP)
- Require no special components added to a RP
- Accuracy of 1% or better 0 A to 100's A
- Zero added error from 0 C to 100 C
- No added mechanical complexity
- Adds no additional system BOM cost

Reference Platform

The Part of the Pa

162

162

Test**ConX***

Beyond Sort, Burn-In, and Class Testing: post-silicon Validation Hardware Strategy

Current Measurement Options

Criteria	RP with	Synthetic Platform	
(High->Low Priority)	VR I-Mon	(Power Plane Splits)	Power Interposer
Cost	Excellent	High	Low
Sub-Rail Measurement	No	Yes	Yes
Leakage Current Error	Poor	Good	Good
Max TDP Current Error	Good	Good	Good
Power Integrity Impact	None	Low	Med
Signal Integrity Impact	None	Low	Med
Test Correlation	Good	Poor	Good
Mechanical complexity	None	Low	High
Customer Usability	Good	Good	Good
Scaling with Current	Excellent	Good	Med

Grading Relative Reference Platform

Test**ConX**

Beyond Sort, Burn-In, and Class Testing: post-silicon Validation Hardware Strategy

Current Measurement Options

Criteria (High->Low Priority)	RP with VR I-Mon	Synthetic Platform (Power Plane Splits)	Power Interposer
Cost	Excellent	High	Low
Sub-Rail Measurement	No	Yes	Yes
Leakage Current Error	Poor	Good	Good
Max TDP Current Err Power Interposer became the			Good
Power Integrity Impage now path of invoctigation			Med
Signal Integrity Impa		Med	
Test Correlation	Good	Poor	Good
Mechanical complexity	None	Low	High
Customer Usability	Good	Good	Good
Scaling with Current	Excellent	Good	Med

Grading Relative Reference Platform

Test**ConX**

Beyond Sort, Burn-In, and Class Testing: post-silicon Validation Hardware Strategy

Interposer Option for Current Measurement Overall lower cost Easier to design than full system Met customer key criteria – Low error from 0A-200A Plug and play in Reference Platform - No special accommodations needed

Beyond Sort, Burn-In, and Class Testing: post-silicon Validation Hardware Strategy

172

DDR	Memory	Trend
	······	

Standard	Bus Clock (MHz)	Data Rate (MT/s)
DDR	133-200	266-400
DDR2	266-400	533-800
DDR3	533-800	1066-1600
DDR4	1066-1600	2133-3200
DDR5	1600-3200	3200-6400

Beyond Sort, Burn-In, and Class Testing: post-silicon Validation Hardware Strategy

Standard	Bus Clock (MHz)	Data Rate (MT/s)	
DDR	133-200	266-400	
DDR2	266-400	533-800	
DDR3	533-800	1066-1600	
90.			

Beyond Sort, Burn-In, and Class Testing: Post-Silicon Validation Hardware Strategy

www.testconx.org

Ideal Scenario

Measure current without adding additional components or complexity to the system

Beyond Sort, Burn-In, and Class Testing: post-silicon Validation Hardware Strategy

187

www.testconx.org

Copper Shape as Sense Resistor Results

- Successfully tested to 350 A (power supply limited)
- High accuracy results can be obtained
 - Error of <1% from 0 A to 350 A
- Challenges exit
 - Compensation for copper's change in resistivity over temperature
 - Left as an exercise for the curious...

Test**ConX**

Beyond Sort, Burn-In, and Class Testing: post-silicon Validation Hardware Strategy

Current Measurement Options							
Criteria (High->Low Priority)	RP with VR I-Mon	Synthetic Platform (Power Plane Splits)	Power Interposer	Copper Shape			
Cost	Excellent	High	Med	Very Low			
Sub-Rail Measurement	No	Yes	Yes	No			
Leakage Current Error	Poor	Good	Good	Good			
Max TDP Current Error	Good	Good	Good	Good			
Power Integrity Impact	None	Low	Med	None			
Signal Integrity Impact	None	Low	Med	None			
Test Correlation	Good	Poor	Good	Excellent			
Mechanical complexity	None	Low	High	None			
Customer Usability	Good	Good	Good	Good			
Scaling with Current	Excellent	Good	Med	Excellent			

Grading Relative Reference Platform

Test**ConX**

Beyond Sort, Burn-In, and Class Testing: post-silicon Validation Hardware Strategy

Summary

- Higher integration and frequency has led to a rise in ICC and corresponding drop in Rpath
- While the power interposer approach has been proven to work at currents exceeding 300 A, there are significant pressures leading to challenges and difficulties continuing with this strategy
- Less intrusive solutions are needed that can provide high accuracy from 0 A to ICC Max

Beyond Sort, Burn-In, and Class Testing: post-silicon Validation Hardware Strategy

Beyond Sort, Burn-In, and Class Testing: Post-Silicon Validation Hardware Strategy

www.testconx.org

Socket Challenges in Post-Silicon Validation for Large BGA

- Agenda
 - Socket Introduction
 - Case Study:
 - Scope
 - Case Study: 1st Gen Intel Xeon Phi
 - Physics and control of package warpage
 - Finite Element Analysis to analyze socket pin deflection including large package warpage
 - What can the socket retention designer do to mitigate socket connectivity risk (sensitivity studies)

Test**ConX**

Beyond Sort, Burn-In, and Class Testing: post-silicon Validation Hardware Strategy

Large BGA challenges in Post-Silicon Validation

- Large number of pins (>3000) require large socket actuation forces
- Large package form factors (>60 mm X 60 mm) and large die cause significant end-of-assembly package warpage
- Stiff packages due to thick substrates, presence of an Integrated Heat Spreader (IHS), or stiffeners cause packages to be extremely difficult to flatten with socket retention loads
- Warped packages lead to critical pins at risk of receiving inadequate stroke
 - Packages go through temperature cycles (from sub-zero C to over 100 C) during postsilicon validation testing and change shape

Test**ConX**

Beyond Sort, Burn-In, and Class Testing: post-silicon Validation Hardware Strategy

Scope of the Problem in Case Study

- Failure mode of interest: Low level contact resistance (LLCR)
- Effect: System instability during post-silicon validation
- Form factor: Large package
- Pin: BGA
- Socket: Elastomer

Beyond Sort, Burn-In, and Class Testing: post-silicon Validation Hardware Strategy

Large package warpage

Test**ConX**®

- No accurate Daisy Chain Test Vehicle (DCTV) to mimic package warpage
- Supplier package warpage may be exceeding spec without warning
- Tiny keep out zone (KOZ) on PCB
 - Very little to no area allowed on the board (primary and secondary side) due to densely
 populated components needed for power delivery and integrity
 - No touch-down area provided for robust structural support and flattening the board

Densely populated components on secondary of board may limit real estate for backing plate touch-down

Beyond Sort, Burn-In, and Class Testing: post-silicon Validation Hardware Strategy

Interpreting Warpage in Package Drawings: Geometric Dimensioning and Tolerancing according to ASME Y14.5

- All package drawings are controlled by Y14.5 standard
- Spec is at 20 C
 - Parts are inspected and screened at 20 C, not room temperature
- Flatness
 - "...is a condition of a surface... having all elements in one plane... tolerance zone defined by two parallel planes within which surface... must lie"
- Coplanarity
 - "...is the condition of two or more surfaces having all elements in one plane...may be used where it is desired to treat two or more surfaces as a single interrupted or noncontinuous surface...similar to flatness"
- There is a coplanarity spec for every BGA for each package drawing
- Note that there is no single "standardized" coplanarity value in industry
- BGA coplanarity spec is usually optimized for SMT (soldered down) applications (high volume), not so optimized for socketed post-silicon validation testing (low volume)

TestConX[®]

Beyond Sort, Burn-In, and Class Testing: post-silicon Validation Hardware Strategy

199

www.testconx.org

www.testconx.org

Large BGA Package Case Study: Knights Corner (1st Gen Intel Xeon Phi Co-Processor)

- First in industry: >1 TFLOP of performance in one single silicon
- Launched Q4'2012
- Powered the fastest supercomputer on TOP500 list and stayed #1 for 2.5 years
- >3000 BGA pins

Sources:

intel.com, ark.intel.com, top500.org

206

Beyond Sort, Burn-In, and Class Testing: post-silicon Validation Hardware Strategy

206

TestConX Workshop

The Elastomer Socket for post-silicon Validation

- Pin properties are temperature and time dependent
- Relation between contact resistance, deflection, and contact force
- The ideal boundary condition on the socket?
- Main challenges for FEA: lack of material constitutive properties (stress strain curves, etc) to model the individual pin

Beyond Sort, Burn-In, and Class Testing: post-silicon Validation Hardware Strategy

What is the "Ideal" Package for Socket Design?

- If the package is perfectly flat and free of residual stress throughout all temperature change and time of the assembly, test, and life cycle, this could reduce electrical failures
- But this ideal package violates basic physics as there will always be CTE mismatch between dissimilar materials
- Real package is never flat

Test**ConX***

Beyond Sort, Burn-In, and Class Testing: post-silicon Validation Hardware Strategy

- The typical retention and board design – Versus the "ideal retention and board design"
- Constraints due to component placement on the board on structural support

Beyond Sort, Burn-In, and Class Testing: post-silicon Validation Hardware Strategy

212

www.testconx.org

Putting it together

- The contact force distribution is not even over the entire BGA pin field
- Hence, the contact resistance is not even over the BGA field
- The socket retention designer has two objectives
 - Make sure all pins are compressed to at least a certain amount
 - Try to have the pin compression as even as possible
- · The socket retention designer must assess or depend on
 - Retention force distribution (die vs stiffener etc)
 - Package initial warpage
 - The coplanarity of the pins (BGA and socket pins)
 - Board warpage
 - Primary side bolster plates and secondary side backing plates
 - Location and size of KOZ available for structural support

Test**ConX**

Beyond Sort, Burn-In, and Class Testing: post-silicon Validation Hardware Strategy

- Total actuation force
- Force distribution (% die vs substrate)
- Bolster plate (yes/no)
- Backing plate
 - Extra pushing from the back (varies)
- Package warpage (varies)

Beyond Sort, Burn-In, and Class Testing: post-silicon Validation Hardware Strategy

- Package properties and manufacturing process may not be known due to confidential IP
- Best guess could be made to properties and manufacturing process to best match Test Vehicle package warpage and shape measurements
- Therefore, not really a package warpage "prediction" per se, if we have little to no visibility into properties and processes
- Use package warpage as a variable knob to turn to find out the sensitivity of package to warpage

Test**ConX**

Beyond Sort, Burn-In, and Class Testing: post-silicon Validation Hardware Strategy

Using Pressure Overclosure Law to Simulate the Socket

- Pressure Overclosure laws are offered in commercial FEA software packages
 - Customized subroutines typically not required for usage
- The trick to modeling the pin force without material properties is to treat the pin field as a discontinuous "contact surface" model rather than as actual solids
 - If socket pins are modeled as solids, then material properties are needed
- Translates supplier's socket pin's Force Deflection curve (see a typical curve) into pressure overclosure law for finite element model's contact properties
- Circumvents the difficulty of not knowing the elastomer's material constitutive properties (e.g., stress strain curves) for the pin's ever changing recipes
- Limitations: cannot model viscoelastic, hyperelastic, or plastic aspects of the pin material

Beyond Sort, Burn-In, and Class Testing: post-silicon Validation Hardware Strategy

Sensitivity Analysis (1)

- Parameters varied
 - Force distribution between die and stiffener (total load fixed)
 - Amount of upward displacement on the center of the board on the secondary side
- Output studied
 - Center pin load
- Key Trend
 - Pushing from the secondary side is more effective than changing the force distribution

Test**ConX**

Beyond Sort, Burn-In, and Class Testing: post-silicon Validation Hardware Strategy

Sensitivity Analysis (2)

- Parameters varied
 - Force distribution between die and stiffener (total load fixed)
 - Variation of End of Line (EOL) Package Warpage
- Output studied
 - Center pin load
- Key Trend
 - EOL Package Warpage has a more dominating effect over pushing from the secondary side or changing the force distribution

Beyond Sort, Burn-In, and Class Testing: post-silicon Validation Hardware Strategy

- Parameters varied
 - Variation of End of Line (EOL) Package Warpage
- Output studied
 - Center pin load
 - Board warpage
- Key Trend
 - Center pin load decreases as board warpage decreases
 - This trend is caused by the underlying increasing package warpage
 - Contrary to the conventional wisdom of "as long as the board stays flat, the risk of connectivity is low"
 - Neglecting large package warpage and modeling board warpage alone could yield misleading risk assessments

Test**ConX**

Beyond Sort, Burn-In, and Class Testing: post-silicon Validation Hardware Strategy

Summary: Socket Case Study

- Sockets typically used in Post-Silicon Validation
- Case Study:

Test**ConX**

- Scope: Large BGA package with elastomer sockets, challenges, metrics to mitigate LLCR
- Case Study: 1st Gen Intel Xeon Phi
- Physics and control of package warpage
- Finite Element Analysis to analyze socket pin deflection including large package warpage, what to do with missing information
- Sensitivity studies showing what the socket retention designer can do to mitigate socket connectivity risk

Beyond Sort, Burn-In, and Class Testing: post-silicon Validation Hardware Strategy

Beyond Sort, Burn-In, and Class Testing: Post-Silicon Validation Hardware Strategy

233

www.testconx.org

- Trends and Thermal Tool Design Challenges
- Case study: High Power and -40 C Solution
 - Primary temperature forcing methods
 - Types of temperature forcing systems
 - TEC based Thermal Tool
 - Phase Change Thermal Tool
- Summary

Beyond Sort, Burn-In, and Class Testing: post-silicon Validation Hardware Strategy

Beyond Sort, Burn-In, and Class Testing: Post-Silicon Validation Hardware Strategy

www.testconx.org

Beyond Sort, Burn-In, and Class Testing: Post-Silicon Validation Hardware Strategy

www.testconx.org

Graph of the dependence of the dew point upon air temperature for several levels of relative humidity.

Ice accumulated on cold plate

TestConX

Courtesy: Wikipedia

Beyond Sort, Burn-In, and Class Testing: post-silicon Validation Hardware Strategy

240

Pop Package Brings Difficulties for SOC Temperature Control

- High temperature margining requirement for low power package
- Large thermal resistance through package stack-up
- Large temperature gradient from memory Tc to SoC Tj
- Memory operating temperature range is lower than SoC
- PCB operational temperature limit

Test**ConX**

 Limited thermal solution space between (i) memory and SoC and (ii) SoC and PCB

Beyond Sort, Burn-In, and Class Testing: Post-Silicon Validation Hardware Strategy

www.testconx.org

TestConX Workshop

Three Primary	Temperature	Forcing	Methods
----------------------	-------------	---------	---------

Mechanical refrigeration i.e. compressor	Expendable coolant such as LN ₂ or LCO ₂	Thermoelectric cooling Peltier chiller	
closed-loop system that recovers and reuses the coolant	open system that expels the spent vapor into the atmosphere.	No need of pressurized of refrigerant lines	
high cost if cooling below -40 C is required	Large cooling capability and range, but no heating capability	Relatively low cooling capacity and narrow range of operation	
slower transition rates	fast transition rates	slow cooling rate	
High initial cost	Storing, supplying and delivering cryogenic fluids can be expensive or otherwise challenging	Easy to be moved, reversible heat pump can also greatly simplify system designs. Performance degrade over time	
hazard from pressurized leaks	Releasing N2 or CO2 to environment may have potential hazard issue	no concerns of environmental hazards	
Test ConX	Beyond Sort, Burn-In, and Class Testing: Post Silio	con Validation Hardware Strategy 245	

Types of Temperature Forcing System				
Test chamber	Thermal Stream	Direct Thermal Head		
Control whole chamber temperature	Inject hot and cold thermal air stream directly on the parts	Hot and cold plate directly touch the parts		
System heating or cooling	Big KOZ, local heating or cooling	Small KOZ, local heating or cooling		
Can test more than one devices simultaneously	test a single device per test	test a single device per test		
convective temperature transfer	convective temperature transfer	thermal contact conductance		
influence on whole testing system	influence on surrounding components	Control local DUT temperature		
slower temperature changes	slower temperature changes	Fast thermal response		

Beyond Sort, Burn-In, and Class Testing: Post Silicon Validation Hardware Strategy

Beyond Sort, Burn-In, and Class Testing: Post-Silicon Validation Hardware Strategy

www.testconx.org

How Thermoelectric Device Work

- The working principle of thermoelectric modules is based on the Peltier effect heating or cooling at an electrified junction of two different conductors.
- Peltier effect: As per the Peltier effect, when two dissimilar metals are joined together to form two junctions, emf is generated within the circuit due to the different temperatures of the two junctions of the circuit.
- A TEC is a semiconductor-based electronic component that functions as a small **heat pump**. By applying a low voltage DC power source to a TE module, heat will be moved through the module from one side to the other.

Test**ConX**

Beyond Sort, Burn-In, and Class Testing: Post-Silicon Validation Hardware Strategy

Beyond Sort, Burn-In, and Class Testing: Post-Silicon Validation Hardware Strategy

Typical Server Thermal Tool: TEC vs Phase Change

	TEC Based Thermal Solution	Phase change Solution
Power Support at 0°C [W]	0-300	0-600
Temperature range [°C]	-40 to 125	-60 to 130
Cost [\$]	1.5-4 K	15-19 K
Footprint [mm ²]	80x120	70x80
Reliability	performance degrades over time	expected to work for few years
Facility support	Liquid coolant and dry air	dry air for condensation

Compared to the typical server thermal tool, Phase change provides x3 capability with the same foot print or less.

Beyond Sort, Burn-In, and Class Testing: Post Silicon Validation Hardware Strategy

C	Different	t Phase C	hange So	olutions (Comparis
		Lowest tem	perature at 0 W ar	nd 400 W	
		Phase Change System 1	Phase Change System 2	Phase Change System 3	Phase Change System 4
	400 W	-15 C	-26 C	15 C	-10 C
	0 W	-48 C	-60 C	-20 C	-65 C
		Maximum	load at 0C and -40)C setpoints	
	Set Point	Phase Change System 1	Phase Change System 2	Phase Change System 3	Phase Change System 4
	0 C	600 W	700 W	300 W	460 W
	-40 C	100 W	200 W	Can not reach - 40° C	280 W
	estCo	DNX [™] Beyond	d Sort, Burn-In, and Class Te	sting: post-silicon Validation	Hardware Strategy 27

Closing Summary

- The topic of post-silicon validation is broad and deep this introductory tutorial only begins to scratch the surface
- The complexity of validation and the hardware solutions needed have unique challenges which constantly must be re-evaluated due to continuing process shrinking, higher levels of integration, higher power, and larger packages
- New methods, strategies, and innovation are necessary to successfully validate future products

274

	Bibliography	
1. Shehabi, Arman (2016). LBNL-1005775. June 2016 <u>https://www.osti.gov/servle</u>	<i>United States Data Center Energy Usage Re</i> 6. Available at: ets/purl/1372902/	eport,
2. Tommy, Bojan (2007). " IEEE International High Le 2007. Available at:	Intel's post-silicon Functional Validation Appr evel Design Validation and Test Workshop. D	<i>oach",</i> ecember
<u>https://ieeexplore.ieee.org/</u>	/ <u>document/4392786</u>	
Test ConX ®	Beyond Sort, Burn-In, and Class Testing: post-silicon Validation Hardware Strategy	275 (1019) · THE

Beyond Sort, Burn-In, and Class Testing: Post-Silicon Validation Hardware Strategy

Number ¢	Acquisition announcement date +	Company +	Business ¢	Country ¢	Price ¢	Used as or integrated with ♦	Ref(s
1	June 4, 2009	Wind River Systems	Embedded Systems	US	\$884M	Software	[67]
2	August 19, 2010	McAfee	Security	US	\$7.6B	Software	[68]
3	August 30, 2010	Infineon (partial)	Wireless	Germany	\$1.4B	Mobile CPUs	[69]
4	March 17, 2011	Silicon Hive	DSP	Netherlands	N/A	Mobile CPUs	[70]
5	September 29, 2011	Telmap	Software	s Israel	N/A	Location Services	[71]
6	April 13, 2013	Mashery	API Management	US	\$180M	Software	[72]
7	May 3, 2013	Aepona	SDN	Ireland	N/A	Software	[73]
8	May 6, 2013	Stonesoft Corporation	Security	+- Finland	\$389M	Software	[74]
9	July 16, 2013	Omek Interactive	Gesture	srael	N/A	Software	[55]
10	September 13, 2013	Indisys	Natural language processing	E Spain	N/A	Software	[56]
11	March 25, 2014	BASIS	Wearable	US	N/A	New Devices	[75]
12	August 13, 2014	Avago Technologies (partial)	Semiconductor	US	\$650M	Communications Processors	[76]
13	December 1, 2014	PasswordBox	Security	e Canada	N/A	Software	[77]
14	January 5, 2015	Vuzix	Wearable	US US	\$24.8M	New Devices	[78]
15	February 2, 2015	Lantiq	Telecom	Germany	undisclosed	Gateways	[79]
16	June 1, 2015	Altera	Semiconductor	US US	\$16.7B	FPGA	[60]
17	June 18, 2015	Recon	Wearable	US	\$175M	New Devices	[80]
18	October 26, 2015	Saffron Technology	Cognitive computing	US	undisclosed	Software	[62]
19	January 4, 2016	Ascending Technologies	UAVs	Germany	undisclosed	New Technology	[81]
20	March 9, 2016	Replay Technologies	Video technology	• Israel	undisclosed	3D video technology	[82]
21	April 5, 2016	Yogitech	IoT security and Advanced Driver Assistance Systems.	Italy	undisclosed	Software	[83]
22	August 9, 2016	Nervana Systems	Machine learning technology	US	\$350M	New Technology	[84]
23	Sept 6, 2016	Movidius	Computer vision	Ireland	undisclosed	New Technology	[64]
24	March 16, 2017	MobilEve	Autonomous vehicle technology	s Israel	\$15B	Self driving technology	Ĩ

