TWENTIETHANNUAI

estConX

March 3 - 6, 2019

Hilton Phoenix / Mesa Hotel Mesa, Arizona

Archive

COPYRIGHT NOTICE

The presentation(s)/poster(s) in this publication comprise the proceedings of the 2019 TestConX workshop. The content reflects the opinion of the authors and their respective companies. They are reproduced here as they were presented at the 2019 TestConX workshop. This version of the presentation or poster may differ from the version that was distributed in hardcopy & softcopy form at the 2019 TestConX workshop. The inclusion of the presentations/posters in this publication does not constitute an endorsement by TestConX or the workshop's sponsors.

There is NO copyright protection claimed on the presentation/poster content by TestConX. However, each presentation/poster is the work of the authors and their respective companies: as such, it is strongly encouraged that any use reflect proper acknowledgement to the appropriate source. Any questions regarding the use of any materials presented should be directed to the author(s) or their companies.

"TestConX" and the TestConX logo are trademarks of TestConX. All rights reserved.

www.testconx.org

Session 3B Presentation 1

TestConX 2019

Breaking It! - Validation & Characterization

TestConX Workshop

www.testconx.org

Acronyms

- HVS/DVS/BVS: High / Dynamic / Bump Voltage Stress/Screen
- ESD: Electro Static Discharge
- HTOL: High Temperature Operating Life
- GIDL: Gate Induced Drain Leakage
- DIBL: Drain Induced Barrier Lowering
- **ET:** Electrical Test; **FT**: Functional Test
- EFA/PFA: Electrical / Physical Failure Analysis
- APU/GPU: Application / Graphics Processing Unit
- LT/RT/HT: Low/Room/High Temperature
- **CUP/SUP:** Circuits/Structures Under Pad

Test**ConX***

EOS: Electrical Over Stress

- **PPM:** Parts Per Million
- **WST:** Wafer Sort Test
 - **FA:** Failure Analysis
 - **TSV:** Through Silicon Via

ELF: Early Life Failures

DRC: Design Rule Compliance

TestConX 2019

Breaking It! - Validation & Characterization

Screens Introduction

Several screens used by Reliability & Test teams:

> First Chip probe (CP) or wafer sort test (WST) at Room Temp.

Done at higher voltage: 1.4 to 2 x Vnom, LT/RT/HT

Purpose: Screen early defects not caught by sort.

- Screens can also be at package level.
- > But wafer level saves efforts, time & costs:
 - If higher screen loss reduces packaging
 - Separates Fab Vs Assembly fails to focus.

Breaking It! - Validation & Characterization

Different Level's of Screens - 1

- Level-1: Wafer Level: ET, Sort, HVS/DVS/BVS/OVS
 - 100's of m. secs to few sec: Static/Dynamic, Dip/droop/Scan delays.
 - To screen general outliers, random and weak defects.
 - For all post Fab Wafers: Consumer, Residential applications.

ET: Electrical Test; **FT:** Functional Test

- Level-2: Module Level: FT, Production and shipment Burn-In
 - Several secs to few mins/hours: Dynamic, High voltage & temp.
 - For Value add products: CPU/APU to screen ELF & Maverick lots.
 - For Medium PPM Apps. Ex: Industrial/Automotive Grades etc.,

ELF: Early Life Fails; PPM: Parts Per Million

Functional Stress Failures on HVS, Burn-In and ESD/EOS - Case Studies

Test**ConX**®

Breaking It! - Validation & Characterization

Different Level's of Screens - 2

- Level-3: Card/Board Level: Few chips together: 2.5D/3D/TSV's etc.,
 - For very low PPM, High Value add CPU/APU/GPU/Server Chips.
 - Generally several hours to upto a day, High REL: Military Apps.
- Level-4: System Level Test (SLT): Whole system test.
 - High Reliability Apps, Few days to weeks: Cloud Systems, Main Frames etc.
 - Mission critical Applications: Medical, Aero, Space.

TSV: Through Silicon Via

Different Screens Comparison

Screen	Test/Pattern	Voltage Level	Temp.	Duration	Wafer/ Package	Function /Purpose	
HVS: (EVS or BVS/ OVS)	Generally Static (DC)	1.8x~2x Vnom	LT, RT (or) HT	Milli seconds to several	Wafer Level at sort or Post Bump	To weed out Voltage & Temp. activated weak parts for TDDB, NBTI/PBTI	
	Dynamic With Patterns	1.3x~1.7x Vnom				For Voltage, Temp and current activated weak parts for SM/EM/Leakage	
DVS	Generally Dynamic	1.4x~1.6x Vnom	RT or HT	seconds	Wafer or module level	Quick Screen at sort for consumer products for early random defects.	
Production Burn-In (PBI)	Dynamic with Functional	1.4xVnom or 1.2xVmax	Tj: 125C~ 150C	2, 12, 24, 48 hrs	Module Level	Effectively screen the IM/ELFR weak parts. (early portion of HTOL)	
PCB/Card Board/SLT	Dynamic with Functional & At Speed	1.4xVnom or 1.2xVmax	RT or HT	Few hours to days	Card/PCB/ System level	Mini PBI / Chip set BI: Check delays between PCB & other chips. X-talk, Scan/Delays, Iddq	
RT – Room temp; LT-Low Temp; HT- High Temp							

Functional Stress Failures on HVS, Burn-In and ESD/EOS - Case Studies

Test**ConX**®

TestConX 2019

Breaking It! - Validation & Characterization

TestConX Workshop

www.testconx.org

Breaking It! - Validation & Characterization

Background: Yield loss on MBIST & Scan fails – same customer - another Fab

- Run DVS evaluation to assess reliability risk.
- DVS condition: 1.4xVdd; 1~2secs; Repeat 2x.
- Apply on BIST (memory) & Scan (logic) area.

Screen & Program Setup:

Test**ConX***

- DVS test program: Single touchdown generated.
- 4 Wafers selected: MBIST: 6~11%, Scan: 8~13%
- A control good wafer added for reference.
- Scan test: 1284msec; MBIST: 375msec for 1x DVS.
- Total Time/one DVS = 1659msec = 1.66sec
- Total Time for 2xDVS = 3318msec = 3.32 sec

Functional Stress Failures on HVS, Burn-In and ESD/EOS - Case Studies

13

Breaking It! - Validation & Characterization

Screen Results & Conclusion

Screen Results Summary:

- Overall yield gain on all 4 wafers after DVS.
- No additional MBIST failures observed on all 4 wafers.
- > One Scan fail each on 3 wafers. Due to long stress time of 3318msec.
- > 1 or 2 dice variation is observed also on control wafer for Scan test.

Conclusion: DVS results show risk of wafers affected by Si bridge is Low.

Screens Sur	nmary: Issues	s/Devices/Nodes
-------------	---------------	-----------------

Node	Issue	DVS Used	DVS & HTOL Flow, Criteria & Results	PPM Criteria (Vs Baseline)	Test results & PPM
0.18um	Poly Edge defect	1.4xVdd, 1.8 sec	Affected wafer, good dies=1014 -> 0 fails	<1000 PPM 904 PPM	
		Done on SRAM	Ref. good wafer, good dies: 1404 -> 0 fails	(baseline)	
0.18um	Poly Edge lift	1.4xVdd, 3.8 sec	6 steps studied, 1.3sec enough to screen.	<1500 PPM	1323 PPM
		done on product	Total good dies:4757, 5 fails detected	(baseline)	
0.18um	M1 random defect	1.4xVdd, 3.68 sec	GI-yield >90%, good dies: $1636 - 0$ fails	<1500 PPM	>90% - 560 PPM
0.180m		1 4xV/dd 200ms ac	$6p-2-$ wir $\leq 90\%$ good dies: $1012 - 2$ fails	(baseline)	<90% - 3008 PPM
0.180111	Via 5 defermation	1.4XVdd, 200118CC	1 fail on Old TM DA BC containment late &	0 Ialis	
0.11um	due to PAPC material	1.4xVdd, 300m.sec	0 foils on New TM PAPC lots	0 Fails	HTOL after DVS
0.11um	Broken Poly	1.4xVdd, 1638msec	Good lot Wafer - 0 fails	<= 1200 PPM	<1000 PPM
			Bad lot Wafer - 2 fails	(Baseline)	
	CoSi Residue:	1.4xVdd, 300m.sec	Wfr#1: 4 good dies fail (not BIST/SCAN)	<1500 PPM	0 Fails on 168hrs
0.13um	BIST & SCAN fails	Good wfr#3 - 0 fails	W fr#2: 3 good dies fail (not BIST/SCAN)	(baseline)	HTOL after DVS.
0.13um	Product Scan 502/506	1.4xVdd, 300m.sec HTOL T168 -> 0 fails	1~4% yield loss wafers -> 1 Fail	<= 2000 PPM	1000 PPM (2 fails)
			5% loss -> 2 fails -> HTOL 168hrs -> 0 fail		
65nm	Patch fails at Notch and MBIST Fails	1.65xVnom, 30x loops to 8sec good lot wfr-0 fail	Bad wfr-0 fails at good & 4 fails near notch Another lot: 2 fails at good region	Ink off at	<1000 PPM
				affected region	
			$C_{1} = \frac{1}{2} \frac{1}$	0.6-11+ 1.691	<1000 PPM
65nm	PC-CA short		Bod lot Water - 0 fails	o fails at 108hrs	
			Bad lot water - 2 fails	alter screen.	
40nm	High Iddq due to SUP/CUP design	1.8xVnom 10x Loop test total 12 sec	Good lot Wafer - 0 fails	0 fails at 168hrs	<1000 PPM
			Bad lot Wafer - 2 fails	after screen.	
14nm	TS-PC, Mx-Jx defects	1.7-1.8V HVS:2-4sec	LScan & MBIST are 50-50 fails	<500 PPM	
(OD)	SCAN & BIST fails	1.44-1.6V DVS: 2-4sec	after screen T168hrs HTOL-0 fails	(Baseline)	<305 PPM
	lest Co	nX [™] Fur	nctional Stress Failures on HVS, Burn-In and ESD/E0	DS - Case Studies	

Breaking It! - Validation & Characterization

Burn-In/HTOL Fails: Case Study - 3

Background: 40nm HTOL fails on customer's test chip at 1000hrs.

History: 45nm used same test chip & passed 1500hrs HTOL.

Observations: Fails are of high Iddq/leakage – T500 pass.
➢ Chip has CUP/SUP & Over Drive (OD) by 20%.
Layout Checks: Customer used stringent CUP/SUP design.

EFA: Fails show hot spot below fail pad.

CUP/SUP: Circuits/Structures Under Pad EFA: Electrical Failure Analysis

Hypothesis: Stringent CUP/SUP design with shrink & OD causing local heating leading to fails under the Pad.

Breaking It! - Validation & Characterization

www.testconx.org

Breaking It! - Validation & Characterization

EOS Case-1: Investigations & Findings

Background: Customer reported normalized yield loss of 10% at sort

- > Product is from Planar Bulk Process.
- > Before and after lots are not impacted.
- > Only particular lots have seen impact on sort.

Findings: Clear ESD/EOS like "Discharge" signature.

- \succ Causing damage at the active / gate area.
- > Showing EOS like discharge caused failures at sort.

Background: Normalized yield loss at sort: 8-15%.

- Product is from planar bulk process.
- ➢ No HVS/DVS → standard sort at Vnom & Vmax only.
- > Above should not cause this level of yield loss.
- > @20K wafers sorted & shipped before for @2yrs.

FA & Findings: Observed clear ESD/EOS like damage.

- Damage found at the Poly/Gate area.
- > EOS like damage caused the failures.

Test**ConX***

Functional Stress Failures on HVS, Burn-In and ESD/EOS - Case Studies

25

Breaking It! - Validation & Characterization

> Standard built in Antenna Diode can't prevent the damage.

Charge built up on Dummy Fill in several metals

- > Charge is too high to be stopped by small antenna diode.
- Design solution modified to include an "Inverter Drain".
- > The new design solution is able to prevent the damage.

Problem Characteristics – For Process Solution

- > Static charge accumulation on dummy fill patterns:
 - > During CMP, deposition or scrubber clean steps. CMP: Chemical Mechanical Polishing
- Damage always at regions below dummy metals:
- Highly desirable to prevent built up of charges;
 - > During the process Quality & Reliability perspective.

Breaking It! - Validation & Characterization

Method of removing charge from dummy fill, instantaneously:

> To maintain wafer at "charge neutral condition" at all process steps.

The above can be achieved by:

- > Connecting dummy fill to ground bus, at each layer as processed.
- > As ground bus is connected through substrate to a grounded Chuck.
- > Charge will be continuously removed at all process steps.

Solution applicable to any wafer process for any tech. node.
Also for post fab processing steps: Bumping, sort & Assembly.
As wafer/die backside will be grounded to Frame/substrate.

Test**ConX**®

TestConX Workshop

www.testconx.org

Breaking It! - Validation & Characterization

> Screens are very important tools at all levels.

> Wafer/module, Card/PCB or System Level.

Fail types & modes to be characterized

To find root cause & fix: Corrective/Preventive Actions

Fixes on design, process & assembly – mandatory.

> Else reliability quals. will not pass to proceed.

Fails not fixed, appear later & more difficult to fix.

