

COPYRIGHT NOTICE

The presentation(s)/poster(s) in this publication comprise the Proceedings of the 2018 TestConX China workshop. The content reflects the opinion of the authors and their respective companies. They are reproduced here as they were presented at the 2018 TestConX China workshop. This version of the presentation or poster may differ from the version that was distributed in hardcopy & softcopy form at the 2018 TestConX China workshop. The inclusion of the presentations/posters in this publication does not constitute an endorsement by TestConX or the workshop's sponsors.

There is NO copyright protection claimed on the presentation/poster content by TestConX. However, each presentation/poster is the work of the authors and their respective companies: as such, it is strongly encouraged that any use reflect proper acknowledgement to the appropriate source. Any questions regarding the use of any materials presented should be directed to the author(s) or their companies.

The TestConX China logo and TestConX logo are trademarks of TestConX. All rights reserved.

www.TestConX.org

Archive - Session 2 Presentation 2

5G and mm-wave Test Challenges

Over the Air Test for Antenna in Package IC

Dongmei Han Xcerra Corporation

Suzhou • October 23, 2018 Shenzhen • October 25, 2018

TestConX China Workshop

TestConX.org

October 23 & 25, 2018

Archive - Session 2 Presentation 2

5G and mm-wave Test Challenges

Contents

- AIP history
- AIP in current applications
- OTA requirement in mass production
- OTA solution advantage
- Different OTA solutions

Over the Air Test for Antenna in Package IC

2018

TestConX China Workshop

TestConX.org

October 23 & 25, 2018

5G and mm-wave Test Challenges

AiP History

What is AiP Technology? AiP technology is an antenna solution technology that implements an antenna or antennas on (or in) an IC package that can carry a highly-integrated radio or radar transceiver die (or dies)

TestConX China Workshop

TestConX China Workshop

Transceiver chip

11mm x 11mm Transceiver chip

TestConX中国

Over the Air Test for Antenna in Package IC

TestConX.org

5G and mm-wave Test Challenges

TestConX China Workshop

5G and mm-wave Test Challenges

5	5G m	ımWav	e Fre	equ <u>e</u>	nc	y Spo	ectrun	۱
	<1	GHz	3-4GHz	5GHz	2	24-28GHz	37-40GHz	64-71GHz
USA	600MH	z (2x35MHz) 2.5GHz (LTE B41)	3.55-3.7 GHz 3.7-4.20	GHz 5.9	-7.1GHz	24.25-24.45GHz 24.75-25.25GHz 27.5-28.35GHz	37-37.6GHz 37.6-40GHz 4 <u>7.2-48.2GH</u> z	64-71GHz
Canada	600MH	z (2x35MHz)				27.5-28.35GHz	37-37.6GHz 37.6-40GHz	64-71GHz
EU	0 700MH	z (2x30 MHz)	3.4-3.8GHz	5.9	-6.4GHz	24.5-27.5GHz		
UK	700MH	iz (2x30 MHz)	3.4-3.8GHz			26GHz		
Germany	700MH	Iz (2x30 MHz)	3.4-3.8GHz			26GHz		
France	0 700MF	z (2x30 MHz)	3.46-3.8GHz			26GHz		
Italy China		a (and a rest	3.3-3.6GHz	4.8-5GHz		24.5-27.5GHz	37.5-42.5GHz	
Korea			3.4-3.7GHz	-		26.5-29.5GHz		
Japan			3.6-4.2GHz	4.4-4.9GHz		27.5-29.5GHz		
Australia	5		3.4-3.7GHz	_		24.25-27.5GHz	39GHz	
Global snapshot of 5G spectrum Around the world, these bands have been allocated or targeted								
	Ν	laterial by Bodhisatwa So	ddhu from IBM Res	search Article: Er	habling 5	G: mmWave Silicon	Integration and Packa	ging
TestConX Cover the frequency up to 71 GHz Over the Air Test for Antenna in Package IC								

TestConX China Workshop

5G and mm-wave Test Challenges

Challenge

- AiP technology has been widely adopted by chip makers for 60GHz radios and gesture radars. It is strongly believed that AiP technology will also provide elegant antenna solutions to 5G and beyond operating in the lower millimeter-wave bands
- Over-the-air (OTA) antenna measurements are required for production testing

Over the Air Test for Antenna in Package IC

TestConX China Workshop

TestConX.org

October 23 & 25, 2018

5G and mm-wave Test Challenges

- Different models allow predicting the behavior of antennas in function of the distance r from them:
 - Near-field:
 - 3 different zones:
 - a) For $r < \lambda/_{2\pi}$, reactive zone

b) For
$$\lambda/_{2\pi} < r < 2 \frac{D^2}{\lambda} \approx \lambda^1$$
, radiative zone

c) For
$$2\frac{D^2}{\lambda} \approx \lambda < r < 2\lambda$$
, transition zone

• In the case b) and c) which interests us, the radiative Power decreases in $1/r^5$

- Far-field:
 - The most common model when we deal with wave propagation
 - Radiative Power decreases in $1/r^2$
 - This model is only valid for $r > 2\lambda$

¹ This approximation is valid because the longitude or diameter D of the antenna is always proportional to λ (between λ and $\lambda/2$).

Test ConX+B

Over the Air Test for Antenna in Package IC

NF-FF zones in function of the frequency								
 As the NF-FF zones are directly linked to the wavelength, and so to the frequency, we are able to find the limit distances for which we are in Far or Near Field These limits are given in the "distance line" below: 								
		NF Reactive		NF Radiative	-	Transition	FF	
Frequency [GH] Wavelength [mm]	R = 0	$R = \frac{\lambda}{2\pi}$	R	= λ	R =	2λ	
30	10	0	1.6		10	20		
40	7.5	0	1.2		7.5	15		
50	6.0	0	1.0		6.0	12		
60	5.0	0	0.8		5.0	10	1	
70	4.3	0	0.7		4.3	8.6	5	
			0.0		2.0	7.1	-	

• The differences between all these regions are given in the following slides

TestConX+B.

Over the Air Test for Antenna in Package IC

TestConX China Workshop

TestConX.org

5G and mm-wave Test Challenges

OTA Platform Based on Lead Frame Technology

- Core technology Lead frame, is a thin layer of metal frame to which semiconductors are attached during the package assembly process.
- We use lead frame to transmit signals replace PCB in our contactor
- We build structures on lead frame to execute different RF performance

TestConX

Over the Air Test for Antenna in Package IC

TestConX China Workshop

TestConX.org

October 23 & 25, 2018

5G and mm-wave Test Challenges

Archive - Session 2 Presentation 2

5G and mm-wave Test Challenges

OTA Product for Radar Application Fine machine tolerance Plug and play socket, easy to implement • Contactor _ead Frame **2** m 22-1855 Contactor PCB LeadFrame Patch **Broadband Contactor + Patch** Patch for 76-81GHz BGA AiP TestConX中国 2018 Over the Air Test for Antenna in Package IC China

TestConX China Workshop

OTA for Radar Application Field Data

Test Results Superior with Patch Integrated in Contactor vs PCB

	RX Gain Test (dB)					
Test Fixture	Low 77GHz	Mid 79GHz	High 81GHz			
PCB Patch	-0.37	-0.87	0.96			
Contactor Patch	7.65	7.85	6.27			

- Less tolerance
- Measurement data more close to lab data

Over the Air Test for Antenna in Package IC

TestConX China Workshop

TestConX.org

5G and mm-wave Test Challenges

5G and mm-wave Test Challenges

This is two patch antennas to test antenna on the top DUT. Using lead frame connect to waveguides.

TestConX China Workshop

5G and mm-wave Test Challenges

Different Application Structures (Continue)

TestConX China Workshop

Archive - Session 2 Presentation 2

5G and mm-wave Test Challenges

- Different frequency ranges
- Different polarizations

Mag E field Plot

Over the Air Test for Antenna in Package IC

TestConX China Workshop

TestConX.org

October 23 & 25, 2018

TestConX China Workshop

Archive - Session 2 Presentation 2

5G and mm-wave Test Challenges

Advantage of Socket

- Less path loss
 - CPW replace PCB traces
 - Waveguide transition to planar antenna
 - Eliminate cables by using waveguide interfacing tester side
- Longer life cycle
 - Lead frame life cycle is over million insertions
- Less tolerance
 - Precise machining process

Over the Air Test for Antenna in Package IC

Archive - Session 2 Presentation 2

5G and mm-wave Test Challenges

OTA for 5G

A production interface solution that enables OTA testing of a 60GHz singlechip integrated Antenna in Package has been delivered to a customer. The solution integrates the OTA Contactor with patch antenna.

Over the Air Test for Antenna in Package IC

TestConX China Workshop

TestConX.org

October 23 & 25, 2018

5G and mm-wave Test Challenges

Conclusion

- AiP technology moves up to cmWave and mmWave makes package in socket test possible for production
- Using lead frame build antenna in socket makes reliable OTA test
- Antennas in contactor design can test different applications with different radiation patterns and directivity out the top, sides and/or bottom of the AIP

Over the Air Test for Antenna in Package IC

2018

TestConX China Workshop

TestConX.org

October 23 & 25, 2018