NINETEENTH ANNUAL Burn-in & Test Strategies Workshop

March 4 - 7, 2018

Hilton Phoenix / Mesa Hotel Mesa, Arizona

Archive

COPYRIGHT NOTICE

The presentation(s)/poster(s) in this publication comprise the Proceedings of the 2018 BiTS Workshop. The content reflects the opinion of the authors and their respective companies. They are reproduced here as they were presented at the 2018 BiTS Workshop. This version of the presentation or poster may differ from the version that was distributed in hardcopy & softcopy form at the 2018 BiTS Workshop. The inclusion of the presentations/posters in this publication does not constitute an endorsement by BiTS Workshop or the workshop's sponsors.

There is NO copyright protection claimed on the presentation/poster content by BiTS Workshop. However, each presentation/poster is the work of the authors and their respective companies: as such, it is strongly encouraged that any use reflect proper acknowledgement to the appropriate source. Any questions regarding the use of any materials presented should be directed to the author(s) or their companies.

The BiTS logo and 'Burn-in & Test Strategies Workshop' are trademarks of BiTS Workshop. All rights reserved.

www.bitsworkshop.org

Tutorial 2: Printed Wiring Board Fabrication

Burn-in & Test Strategies Workshop

www.bitsworkshop.org

March 4-7, 2018

Burn-in & Test Strategies Workshop

Bits 2018

Burn-in & Test Strategies Workshop

What Is It?

• Wikipedia

A printed wiring board (PWB) mechanically supports and electrically connects electronic components using conductive tracks, pads and other features etched from copper sheets laminated onto a non-conductive substrate. PWBs can be single sided (one copper layer), double sided (two copper layers) or multi-layer (outer and inner layers). Multi-layer PWBs allow for much higher component density. Conductors on different layers are connected with plated-through holes called vias. Advanced PWBs may contain components - capacitors, resistors or active devices embedded in the substrate..

1980's PWB technology "PCB Spectrum" by Bill Bertram - Bill Bertram. Licensed under CC BY-SA 3.0 via Commons -

"Connecting Your DUT To Your Tester"

PWB Classifications

- There are two basic ways to form circuits on a PWB
- Additive
 - Formation is accomplished by adding copper to a bare PWB in the pattern and places desired
- Subtractive
 - The unwanted portion of the copper foil on the base substrate is etched away, leaving the desired pattern
- Our discussion today will focus on processes related to the latter method

"Connecting Your DUT To Your Tester"

- Single-sided
 - Circuitry on one side only, components installed on back side
- Double-sided
 - Circuitry on both sides, plated thru holes, components on one or both sides
- Multilayer
 - To increase area for routing, multiple layers may be inside
 - Through holes, buried via's or blind via's may be employed to further increase circuit layout density

"Connecting Your DUT To Your Tester"

Bits 2018

	Measuring Units Used in PWB Industry						
	Units	Micro Inches	Microns	Mils	ММ	Inches	Angstroms
	Micro Inch	1	0.025	0.001	0.000025	0.000001	250
	Micron	40	1	0.04	0.001	0.00004	10,000
	Mil	1000	25	1	.025	0.001	250,000
	MM	40,000	1,000	40	1	0.04	100,000,000
Burn-li	"n-in & Test Strategies Workshop" Connecting Your DUT To Your Tester"						

	Attributes of A PWB					
Attribute	Туре				ATE	
Layer Count		2-40	40 to 60	60+	68+	
Board Thickness		3.2mm	5.1mm	6.35mm	7.6mm+	
Aspect Ratio	Plated Thru Hole	12:1	15:1	20:1	30+:1	
•	Blind Via	2:1	1:1	0.75:1	n/a	
Line & Space	Inner Layer	100µ/100µ	75µ/75µ	50µ/50µ	50µ/50µ	
Line & Space	Outer Layer	125µ/125µ	75µ/75µ	50µ/75µ	50µ/50µ	
Minimum Drill		200µ	150µ	<150µ?	100µ	
Solder Mask Registration		100µ	75µ	50µ	<50µ	
"Connecting Your DUT To Your Tester"						

	Attributes	of A PV	VB (in in	ches)	
Attribute	Туре				ATE
Layer Count		2-40	40 to 60	60+	68+
Board Thickness		0.126	0.200	0.250	0.300+
Aspect Ratio	Plated Thru Hole	12:1	15:1	20:1	30+:1
	Blind Via	2:1	1:1	0.75:1	n/a
Line & Chase	Inner Layer	0.004/0.004	0.003/0.003	0.002/0.002	0.002/0.002
Line & Space	Outer Layer	0.005/0.005	0.003/0.003	0.002/0.003	0.002/0.002
Minimum Drill		0.008	0.006	<0.006	0.004
Solder Mask Registration		0.004	0.003	0.002	<0.002
Burn-In & Test Strategies Workshop 2 Burn-In & Test Strategies Workshop 2 Burn-In & Test Strategies Workshop 2					

Bits 2018

- Pitch
 - Device, trace, space, hole to copper
- Layers
 - Rows on a BGA device
- Hole Diameter
 - Function of device pitch
- Aspect Ratio
 - Ratio of thickness to hole diameter (think soda straw)

"Connecting Your DUT To Your Tester"

Attributes – By Device Pitch

- 1.0mm, 0.8mm, 0.5mm, 0.4mm
- Translates to other attributes
 - Line width
 - Spacing
 - Dielectric spacing
 - Hole to copper feature dimensions

"Connecting Your DUT To Your Tester"

Attributes by Device Pitch					
	1.0mm (0.0394)	0.8mm (0.0315)	0.5mm (0.0197)	0.4mm (0.0157)	
Pad	0.76mm (0.0299)	0.66mm (0.026)	0.35mm (0.0138)	0.3mm (0.0118)	
Hole	0.37mm (0.0146)	0.3mm (0.0118)	0.15mm (0.0059)	0.1mm (0.0039)	
Line	200µ (0.008)	200µ/125µ (0.008/0.005)	200µ/75µ (0.008/0.003)	200µ/50µ 0.008/0.002)	
Hole 2 Copper	0.25mm (0.010)	0.18mm (0.007)	0.12mm (0.005)	0.1mm (0.004)	
Aspect Ratio	Low	Medium	High	Extreme	
Connecting Your DUT To Your Tester"					

- Each row of a BGA device = one signal layer
- Signal layers need corresponding ground planes
 Impedance control
- May need additional routing layers

"Connecting Your DUT To Your Tester"

Attributes – Hole Diameter

- Drilled or finished hole diameter
- Human Hair
 - 40µ to 250µ (0.0015" to 0.010")
 - 100µ is pretty average (0.004")
- Today's interface boards are drilled with a 100µ to 150µ drill bit (0.004" to 0.006")
 - And smaller

"Connecting Your DUT To Your Tester"

Attributes – Aspect Ratio

- Ratio of the board thickness relative to drilled hole diameter
- 1.0mm device, 13:1
- 0.8mm device, 16:1
- 0.5mm device, 31:1
- 0.4mm device, 38:1
- 0.35mm device, >40:1

"Connecting Your DUT To Your Tester"

Why Copper?

- Copper is an excellent electrical conductor
- Low electrical resistivity
- Inexpensive metal
- Soft and easily workable
- Easily processed
- Patternable by photolithography
 - Using relatively benign chemistry

"Connecting Your DUT To Your Tester"

Copper Foil

- Copper is the dominant metal for interconnection use
- Specified by weight
 - $-\frac{1}{2}$ ounce per square foot
 - 1 ounce per square foot
- Corresponding thicknesses
 - 17u and 35u respectively
- Usually produced by electrolytic deposition on a mandril
 - 99.8% purity common
 - Thickness tolerance is approx. 10%

"Connecting Your DUT To Your Tester"

29

rn-in & Test Strategies Worksh

Tutorial 2: Printed Wiring Board Fabrication

Tutorial 2: Printed Wiring Board Fabrication

Burn-in & Test Strategies Workshop

www.bitsworkshop.org

Thickness	Tolerance	Construction	Resin Content	E _r @ 1 MHz	E _r @ 10 GHz
0.008	0.001	1x 7628	44.4%	4.55	4.12
0.008	0.001	2x 2116	43.0%	4.54	4.11
0.008	0.001	1x 2116 1x 2113	48.6%	4.36	4.02
0.008	0.001	1x 7629	42.6%	4.38	4.12

"Connecting Your DUT To Your Tester"

Laminate Construction

- Know what you're getting
- Understand the implications
- Electrically significant or not
- Mechanically significant!

"Connecting Your DUT To Your Tester"

	March 2006 DRAFT DOCUMENT FC	RINDUSTRY	CONSENSUS VO	TE ONLY		IPC-4101B	
	Revision Date: March 2006						
	SPECIFICATION SHEET Srecincation Sweet #: 10-4101/12/ Rearrow Centers T: 1: Work C Space Rearrow Centers T: 1: Work C Space Rearrow Control State (Space Rearrow Control State (Space) Factor Rearrow Microsovic C Space Factor Rearrow Microsovic C Space Ministry Microsovic C Space Space Space Space Space Space Space Ministry Microsovic C Space Space Space Space Ministry Microsovic C Space	A Indary 2: Modified mum UL34 Requir	Epoxy or Non-epoxy rement: V-0	r (max. wt. 5%)	Keywords: (For S NOT Grade Requ See Section 7 Lead-Free FR-4 Low Z-axis CTE High Decomposite CAF Resistant	Gearch Only) Irement	
	LAMIN	ATE REQUIR	REMENTS				
	Laminate Requirement	Specification <0.50 mm [0.0197 in]	Specification ≥0.50 mm [0.0197 in]	Units	Test Method	Ref. Para.	
	 Peel Strength, minimum A Low profile copper foil and very low profile copper foil – all copper weights >12 µm [0.669 mi]. B standard profile copper foil After thermal stress At 125°C [257°F] After process solutions C All other foil – composite 	AABUS 0.80 [4.57] 0.70 [4.00] 0.55 [3.14] AABUS	AABUS 1.05 [6.00] 0.70 [4.00] 0.80 [4.57] AABUS	N/mm [lb/in]	2.4.8 2.4.8.2 2.4.8.3	3.9.1.1 3.9.1.1.1 3.9.1.1.2 3.9.1.1.3	
	2. Volume Resistivity, minimum A. C-96/33/90 B. After moisture resistance C. At elevated temperature E-24/125	10 ⁶ 10 ³	10 ⁴ 10 ³	MΩ–cm	2.5.17.1	3.11.1.3	
	Surface Resistivity, minimum A. C-96/35/90 B. After moisture resistance C. At elevated temperature E-24/125	10 ⁴ 10 ³	10 ⁴ 10 ³	MΩ	2.5.17.1	3.11.1.4	
	4. Moisture Absorption, maximum	-	0.5	%	2.6.2.1	3.12.1.1	
	5. Dielectric Breakdown, minimum 6. Permittivity at 1 MHz, maximum	-	40	kV	2.5.6	3.11.1.6	
	(Laminate & prepreg as laminated)* 1 MHz 1 GHz 10 GHz	5.4 5.2 AABUS	5.4 5.2 AABUS	-	2.5.5.2 2.5.5.3 2.5.5.9	3.11.1.1 3.11.2.1	
	7. Loss Tangent at 1 MHz. maximum (Laminate & prepreg as laminated)* 1 MHz 1 GHz 10 GHz	0.035	0.035	-	2.5.5.2 2.5.5.3 2.5.5.9	3.11.1.2 3.11.2.2	
	8. Flexural Strength, minimum A. Length direction B. Cross direction	Ξ	415 [60,190] 345 [50,040]	N/mm² [lb/in²]	2.4.4	3.9.1.3	
	 Flexural Strength at Elevated Temperature, length direction, minimum 	-	-	N/mm ² [lb/in ²]	2.4.4.1	3.9.1.4	
	10. Arc Resistance, minimum	60	60	5	2.5.1	3.11.1.5	
	11. Thermal Stress 10 s at 288°C [550.4°F], minimum A. Unetched B. Etched	Pass Visual Pass Visual	Pass Visual Pass Visual	rating	2.4.13.1	3.10.1.2	
	12. Electric Strength, minimum (Laminate & prepreg as laminated)	30	-	kV/mm	2.5.6.2	3.11.1.7 3.11.2.3	
	 Flammability (Laminate & prepreg as laminated) 	V-0 minimum	V-0 minimum	rating	UL94	3.10.2.1 3.10.1.1	
	14. Glass Transition Temperature	-	170 minimum	°C	2.4.24 2.4.25	3.10.1.6	
	15. Decomposition Temperature	-	340 minimum	°C	ASTM D3850 (5% wt loss)	3.10.1.10	
BITS ⁸						103	
	"Connec	tina You	r DUT To	Your Te	ester"	105	40
Burn-in & Test Strategies Workshop	•••••••						

- Electrical
 - Dielectric Constant or
- ε_r Epsilon-sub-r (or relative permittivity)
 - The dielectric constant is a ratio of the capacitance of a capacitor in which a particular insulating material is the dielectric, to the capacitance of the capacitor in which a vacuum is the dielectric.
 - Also known as E-sub-r
- Effective Permittivity

"Connecting Your DUT To Your Tester"

Tutorial 2: Printed Wiring Board Fabrication

Material Properties – Trace Variabilities

- Dry film etch tolerance is +/-12µ; therefore as W decreases Z0 error increases.
- As H decreases, tolerance changes from +/- 10% to ~+/-15µ. H also varies within a sheet +/- 10µ.
- T does not vary significantly, but a 'tall' T results in higher resin flow around the trace and makes the final thickness H somewhat less predictable.
- A 'tall' T is also prone to under etch, which influences Z0.

 Fiberglass reinforced materials are not homogenous, and εr *is not* constant in the material.

*Z0 or Z naught = impedance

Bits 2018

"Connecting Your DUT To Your Tester"

 Important: driven by etch variation and by heterogeneous materials Z0 varies as a function of distance.

	min	nominal	max	
	88 um	100 um	112 um	
	53.2 Ω	50.1 Ω	47.4 Ω	
Height				
	min	nominal	max	
	201 um	223 um	245 um	
	47.0 Ω	50.1 Ω	53.0 Ω	
Combined	Error			
	min	nominal	max	
	44.3 Ω	50.1 Ω	56.1 Ω	

"Connecting Your DUT To Your T

Burn-in & Test Strategies Workshop

www.bitsworkshop.org

				R	lator	iale	Cha	rt				
	Mwave 1000	Mwave 2000	Mwave 3000	Mwave 4000	Meg 6	Rogers 4350	N4000 -13	N4000 -13SI	N4800 -20	N4800 -20SI	Astra MT7	Tachyon 100
Mech												
Peel strength												
After float	6.6	6.6	5.5	5.5	.8kN/m	5	7.5	7.5	7	7	5.7	
At elev. temp	5.6	5.6	4.4	4.4	n.a.	n.a.	8.1	8.1	6.5	6.5	n.a.	5.5
After exp./proc	5.3	5.3	5	5	n.a.	n.a.	9	9	7	7	n.a.	5.5
X-Y CTE	10-14	10-14	10-14	10-14	14-16	10-12	10-14	10-14	10-14	10-14	12	15
Z CTE α1	55	55	55	55	45	32	70	70	27	31	60	45
Z CTE α2	260	260	260	260	260	n.a.	280	280	205	210	300	250
α1, 50C to	Tg; α2, Tg	to 260C										
Starts Strategies Workshop "Connecting Your DUT To Your Tester"										4		

	Materials Chart												
		Mwave 1000	Mwave 2000	Mwave 3000	Mwave 4000	Meg 6	Rogers 4350	N4000 -13	N4000 -13SI	N4800 -20	N4800 -20SI	Astra MT7	Tachyon 100
Elec	ctrical												
Dk													
	2 Ghz	3.7	3.4	3.8	3.5	3.71	n.a.	3.7	3.2	3.7	3.55	3	3.04
	10 Ghz	3.7	3.4	3.8	3.5	3.61	3.48	3.7	3.3	3.8	3.4	3	3.02
Df													
	2 Ghz	0.004	0.003	0.0032	0.002	0.002	0.0031	0.009	0.008	0.007	0.0055	0.0017	0.0021
	10 Ghz	0.0055	0.004	0.0048	0.0028	0.004	0.0037	0.008	0.007	0.0075	0.006	0.0017	0.0021
The (Tg)	rmal												
	TMA	215	215	170	170	n.a.	280	200	200	180	180	n.a.	180
	DMA	240	240	200	200	210	n.a.	240	240	210	210	n.a.	220
	DSC	n.a.	n.a.	n.a.	n.a.	185	n.a.	210	210	200	200	200	185
	D:#		- I			- 1							

DSC, Differential Scanning Calorimetry; TMA, Thermomechanical Analysis; DMA, Dynamic Mechanical Analysis.

"Connecting Your DUT To Your Tester"

Burn-in & Test Strategies Workshop

www.bitsworkshop.org

Layer	Thickness	Stackup Picture	Family	Description	Туре	
	(Inch)				DK / DF	
SM-1	0.0005		SM	Spray LPI	3.20 / 0.0000	
L-1, TOP	0.0018		Cu - Std	1/4 + Std Plt	SIGNAL - FOIL	
	0.0058		HTFR4	1080	3.57 / 0.0000	
L-2 CND	0.0006		CU - Std	1080	DOWER CROUND	
L-2, GND	0.0006			.5	3 55 / 0 0000	
1-3 PWP1	0.0025		CIL- St	5	POWER GROUND	
L-3, PWK1	0.0000		HTED A	.5	3 73 / 0 0000	
1-4 PWP2	0.0049		Cu - Std	5	POWER GROUND	
L-4, FWR2	0.0000		HTER4	0.0025	3 55 / 0 0000	
L-5 GND	0.0006		Cu - Std	5	POWER GROUND	
L-5, 6ND	0.0099		HTER4	2116	3 73 / 0 0000	
	0.0000		HTFR4	2116	5.757 0.0000	
1-6 SIG1	0.0006		Cu - Std	5	SIGNAL	
2 0, 5101	0.0080		HTFR4	0.008	3 82 / 0 0000	
I-7. GND	0.0006		Cu - Std	.5	POWER GROUND	
27,010	0.0099		HTFR4	2116	3.73 / 0.0000	
	0.0000		HTFR4	2116		
1-8, SIG2	0.0006		Cu - Std	.5	SIGNAL	
2 3, 0102	0.0080		HTFR4	0.008	3.82 / 0.0000	
L-9, GND	0.0006		Cu - Std		POWER GROUND	
2 97 0110	0.0099		HTFR4	2116	3.73 / 0.0000	
			HTFR4	2116		
L-10, SIG3	0.0006		Cu - Std	5	SIGNAL	
	0.0080	A	HTFR4	0.008	3.82 / 0.0000	
L-11, GND	0.0006		Cu - Std	.5	POWER GROUND	
	0.0099		HTFR4	2116	3.73 / 0.0000	
			HTFR4	2116		
L-12, SIG4	0.0006		Cu - Std	.5	SIGNAL	
	0.0080		HTFR4	0.008	3.82 / 0.0000	
L-13, GND	0.0006		Cu - Std	.5	POWER_GROUND	
	0.0099		HTFR4	2116	3.73 / 0.0000	
			HTFR4	2116		
L-14, SIG5	0.0006		Cu - Std	.5	SIGNAL	
	0.0080		HTFR4	0.008	3.82 / 0.0000	
L-15, GND	0.0006		Cu - Std	.5	POWER_GROUND	
	0.0099		HTFR4	2116	3.73 / 0.0000	
			HTFR4	2116		
L-16, SIG6	0.0006		Cu - Std	.5	SIGNAL	
	0.0080		HTFR4	0.008	3.82 / 0.0000	
L-17, GND	0.0006		Cu - Std	.5	POWER_GROUND	
	0.0049		HTFR4	2116	3.73 / 0.0000	
L-18, PWR3	0.0006		Cu - Std	.5	POWER_GROUND	
	0.0025		HTFR4	0.0025	3.55 / 0.0000	
L-19, GND	0.0006		Cu - Std	.5	POWER_GROUND	
	0.0058		HTFR4	1080	3.57 / 0.0000	
1 20 ROT	0.0010		HIFK4	1/4 L Ctd Dit	STONAL Fail	
L-20, BOT	0.0018		Cu - Sta	1/4 + Sta Plt	31GNAL - FOII	
Sm-2	0.0005		511	Spray LPI	3.20 / 0.0000	
	0.1517	Total Calc. Thickness				
	0.1520	Incl.Plating	+0.0152	-0.0152		
		After Lamination	+	-		
Drill/Rout File	es: A: DR-1					
			E	ngenix® by Cimnet Sy	tems, Inc. © 2002-2008	
		"Connecting V			tor"	

The Process – Inner Layer Imaging

- Photo resist application
- UV Exposure
 - Laser Direct Imaging (LDI)
 - Collimated light & film
 - Polymerizes resist
- Develop
 - Removes non-polymerized resist

"Connecting Your DUT To Your Tester"

The Process – Inner Layer Imaging

- Photo resist application
- UV Exposure
 - Laser Direct Imaging (LDI)
 - Collimated light & film
 - Polymerizes resist
- Develop
 - Removes non-polymerized resist

"Connecting Your DUT To Your Tester"

The Process – Inner Layer Imaging

- Photo resist application
- UV Exposure
 - Laser Direct Imaging (LDI)
 - Collimated light & film
 - Polymerizes resist
- Develop
 - Removes non-polymerized resist

"Connecting Your DUT To Your Tester"

"Connecting Your DUT To Your Tester"

The Process – Automatic Optical Inspection

Post-Etch Punch

- Registers all layers to common optical targets
- Slots added for tooling purposes
- AOI
 - Data downloaded from CAM
 - Core layer scanned
 - Compared to CAM data
 - Verification

"Connecting Your DUT To Your Tester"

"Connecting Your DUT To Your Tester"

61

rn-in & Test Strategies Worksh

	Layer	Thickness	Stackup Picture	Family	Description	Туре	
	-	(Inch)	-	-		DK / DF	
	SM-1	0.0005		SM	Spray LPI	3.20 / 0.0000	
	L-1, TOP	0.0018		Cu - Std	1/4 + Std Plt	SIGNAL - Foil	
		0.0058		HTFR4	1080	3.57 / 0.0000	
		010000		HTFR4	1080	5167 / 516666	
	1-2. GND	0.0006		Cu - Std	5	POWER GROUND	
	L-2, 0ND	0.0000			0.0025	3 55 / 0 0000	
	1-2 DWD1	0.0025		Cu - Std	0.0025 E	POWER CROUND	
	L-5, PWRI	0.0006			.5	POWER_GROUND	
		0.0049		HIFK4	2116	3.73 / 0.0000	
	L-4, PWR2	0.0006		Cu - Std	.5	POWER_GROUND	
		0.0025		HTFR4	0.0025	3.55 / 0.0000	
	L-5, GND	0.0006		Cu - Std	.5	POWER_GROUND	
		0.0099		HTFR4	2116	3.73 / 0.0000	
				HTFR4	2116		
	L-6, SIG1	0.0006		Cu - Std	.5	SIGNAL	
		0.0080		HTFR4	0.008	3.82 / 0.0000	
	L-7, GND	0.0006		Cu - Std	.5	POWER_GROUND	
		0.0099		HTFR4	2116	3.73 / 0.0000	
				HTFR4	2116		
	1-8, SIG2	0.0006		Cu - Std	.5	SIGNAL	
	2 0, 0102	0.0080		HTFR4	0.008	3.82 / 0.0000	
	L-9 GND	0.0006		Cu - Std	5	POWER GROUND	
	L-9, 0ND	0.0000			2116	3 73 / 0 0000	
		0.0099		11111111	2110	5.757 0.0000	
	1 10 0100	0.0000		HIFK4	2116	CLONIN	
	L-10, SIG3	0.0006		Cu - Sta	.5	SIGNAL	
		0.0080	A	HIFR4	0.008	3.82 / 0.0000	
	L-11, GND	0.0006		Cu - Std	.5	POWER_GROUND	
		0.0099		HIFR4	2116	3.73 / 0.0000	
				HTFR4	2116		
	L-12, SIG4	0.0006		Cu - Std	.5	SIGNAL	
		0.0080		HTFR4	0.008	3.82 / 0.0000	
	L-13, GND	0.0006		Cu - Std	.5	POWER_GROUND	
		0.0099		HTFR4	2116	3.73 / 0.0000	
				HTFR4	2116		
	L-14, SIG5	0.0006		Cu - Std	.5	SIGNAL	
		0.0080		HTFR4	0.008	3.82 / 0.0000	
	L-15, GND	0.0006		Cu - Std	.5	POWER GROUND	
		0.0099		HTFR4	2116	3.73 / 0.0000	
				HTFR4	2116		
	L-16, SIG6	0.0006		Cu - Std	.5	SIGNAL	
	_ 10, 0100	0.0080		HTFR4	0.008	3.82 / 0.0000	
	L-17, GND	0.0006		Cu - Std	.5	POWER GROUND	
	2 2.7, 0.10	0.0049		HTFR4	2116	3.73 / 0.0000	
	1-18 PWP3	0.0006		Cu - Std	5	POWER GROUND	
	L-10, F WK3	0.0006			0.0025	3 55 / 0 0000	
	L-19 CND	0.0025		Cu - Std	0.0025 E	DOWER CROUND	
	L-19, GND	0.0006			1090	2 E7 / 0 0000	
		0.0058		LITED A	1000	5.57 / 0.0000	
	1-20 BOT	0.0019		CU - Std	1/4 ± Ctd Dit	STONAL - Foil	
	CM-2	0.0018		Cu - 500	1/4 T Stu Pit	3 30 / 0 0000	
	SM-2	0.0005		SM	Spray LPI	3.20 / 0.0000	
		0.1517	Total Calc. Thickness				
		0.1520	Incl.Plating	+0.0152	-0.0152		
			After Lamination	+	-		
	Drill/Rout F	iles: A: DR-1					
				6	ingenix® by Cimnet Sy	stems, Inc. © 2002-2008	
			"Connecting Vo		To Your Tee	tor"	
Burn-in & Test Strategies Workshop			Connecting to		to tour les	lei	

The Process - Drill

- Mechanical hole formation
 - 100µ 150µ typical
- Opto-mechanical positioning
 - Glass scales
- Real-time drill bit analysis
 - Diameter
 - Run-out
 - Broken bit detection
- Stub drilling or back drilling

"Connecting Your DUT To Your Tester"

BITS TO BURNING TO BUR

"Connecting Your DUT To Your Tester"

"Connecting Your DUT To Your Tester"

The Process – Hole Prep & Copper Plate

- Electroless copper deposition
- Seed layer
 - Prepares dielectric and interconnects for subsequent plating operations
 - 30 micro-inches 40 micro-inches followed by copper plating
 - 75 micro-inches 125 micro-inches to prep for imaging process
- Unfriendly chemistry
- Inherently unstable

"Connecting Your DUT To Your Tester"

The Process – Hole Prep & Copper Plate

- Carbon
- Graphite
- Palladium
- Electroless Nickel
- Conductive Polymer
- Non-Formaldehyde-Based Electroless Copper

"Connecting Your DUT To Your Tester"

- Fill to create flat surface
 Needed for socket touchdown
- Vacuum assist
- High aspect ratio
- Blind vias

"Connecting Your DUT To Your Tester"

The Process - Planarization

- Fill to create flat surface
 Needed for socket touchdown
- Vacuum assist
- High aspect ratio
- Blind vias
- Planarize the surface

"Connecting Your DUT To Your Tester"
The Process – Outer Layer Imaging

- Reversed from inner layer imaging
- Plating resist, not etch resist
- Photo-resist application
- UV Exposure
 - Film and collimated light
 - LDI or Laser Direct Imaging
 - Polymerizes photo-resist
- Develop

Burn-in & Test Strategies Workshop

- Removal of non-polymerized resist

"Connecting Your DUT To Your Tester"

The Process – Copper-Nickel-Gold Plating

- Electroplating
 - Chemistry (electrolyte solution)
 - Power rectifier
 - Rectifier converts AC to DC
 - Anode (copper)
 - Cathode (PWB panel)

"Connecting Your DUT To Your Tester"

The Process – Copper-Nickel-Gold Plating

- 1 mil (25 micron) minimum copper thickness in holes
- Minimize surface buildup
- Aspect ratio
 - Through holes or microvias
- Robust and survivable
- Etch resist

"Connecting Your DUT To Your Tester"

The Process – Outer Layer Etch

- Define the outer layer(s) pattern
 - Removal of base copper
 - Defines lines, pads, other features
 - Impedance control
- Nickel / Hard Gold typical ATE finish
- · Etch factors and 'overhang'
- Other finishes available

"Connecting Your DUT To Your Tester"

Burn-in & Test Strategies Workshop

www.bitsworkshop.org

BiTS 2018

The Process – Electrical Test

- Direct measurement for first board

 Indirect measurement of subsequent boards
- Isolation and continuity
- Capacitive or electromagnetic coupling
 - Broken traces = reduced coupling
 - Shorted traces = increased coupling
- Trace to ground (increased degree of confidence
- Adjacency analysis

"Connecting Your DUT To Your Tester"

"Connecting Your DUT To Your Tester"

77

urn-in & Test Strategies Worksh

The Process – Silk Screen or Legend		
 Assembly nomenclature 	re or legend	
 Available colors 		
 Product identification 		
 Screen print 		
 Inkjet 		
BITS 00 Burn-in & Test Strategies Workshop	"Connecting Your DUT To Your Tester"	78

Bits 2018

The Process - Depanelization

- Secondary Drill (non-plated holes)
- Back drill or stub drill
- Counterbores / countersinks
- Slots
- Routing

"Connecting Your DUT To Your Tester"

The Process – Final Inspection

- Visual and dimensional
- Cosmetic defects
- Impedance testing
- Cross sections
- Other measurements and certifications

"Connecting Your DUT To Your Tester"

Bits 2018

- Founded in 1969
- Privately owned and operated
- Full Turn-Key Supplier
 - SI/PI Engineering
 - Design
 - Fabrication
 - Assembly
 - Sockets and Interconnects

"Connecting Your DUT To Your Tester"

