NINETEENTH ANNUAL Burn-in & Test Strategies Workshop

March 4 - 7, 2018

Hilton Phoenix / Mesa Hotel Mesa, Arizona

COPYRIGHT NOTICE

The presentation(s)/poster(s) in this publication comprise the Proceedings of the 2018 BiTS Workshop. The content reflects the opinion of the authors and their respective companies. They are reproduced here as they were presented at the 2018 BiTS Workshop. This version of the presentation or poster may differ from the version that was distributed in hardcopy & softcopy form at the 2018 BiTS Workshop. The inclusion of the presentations/posters in this publication does not constitute an endorsement by BiTS Workshop or the workshop's sponsors.

There is NO copyright protection claimed on the presentation/poster content by BiTS Workshop. However, each presentation/poster is the work of the authors and their respective companies: as such, it is strongly encouraged that any use reflect proper acknowledgement to the appropriate source. Any questions regarding the use of any materials presented should be directed to the author(s) or their companies.

The BiTS logo and 'Burn-in & Test Strategies Workshop' are trademarks of BiTS Workshop. All rights reserved.

Heating Up - Burn-in and Thermal

Extended / Accelerated Burn-In Implementation for Cycle Time & Cost Savings

Krishna Mohan Chavali Sivakumar Pasupathi GLOBALFOUNDRIES

BiTS Workshop March 4 - 7, 2018

Burn-in & Test Strategies Workshop

Bits 2018

www.bitsworkshop.org

March 4-7, 2018

Heating Up - Burn-in and Thermal

Contents

- Abstract
- Introduction
- Standard HTOL Vs Extended Accelerated BI
- Methodology
- Prior Requirements & Best Suitable Cases
- Extended Acceleration Study & Results
- Implementation & Savings
- Advantages
- Conclusion & References

Extended / Accelerated Burn-In Implementation for Cycle Time & Cost Savings

Abstract

- Conventional package level Burn-In is associated with significant costs & time.
- Cycle time to go through silicon integration, bumping, dicing, assembly and final test before starting the burn-in will take 4~5 months.
- After that execution of HTOL stress and test to 1000 hours will take 2 months.
- If the process is stable and product design is able to support extended Voltage and /or temperature stress the above Overall cycle time can be reduced.
- With prior planning and upon meeting some pre-requisites, not only the cycle time can be improved but also huge cost savings can be made.
- Presented here are the Extended Accelerated HTOL stress techniques by which the reduction in the overall cycle time can be achieved:
 - By extended stresses either at higher voltages and/or at higher temperatures.

BiTS 2018

Heating Up - Burn-in and Thermal

Introduction

- Industry standard HTOL test for Semiconductor ICs is done at 125 C up to 1000 hrs.
 - To demonstrate \geq 10years of useful life, for the product in the field.
- Stress conditions for EFR and HTOL stresses will be generally based on acceleration Factors:
- The Voltage and Temperature Acceleration Factors are given by:
 - Voltage Acceleration Factor (VAF) : Exp [β * (V_{stress} V_{use})]
 - Temperature Acceleration Factor (TAF) : $Exp [Ea/K^*(1 / T_{use} 1 / T_{stress})]$ Where β is the Wei-bull slope; Ea: Activation Energy; K: Boltzmann's constant.
- If the process and product are able to support higher than required stress compliant temperatures, the overall 1000hrs of HTOL stress can be reduced either by:
 - Increasing the stress voltage at stipulated 105 / 125 C and / or
 - Increasing the stress temperature to >105 / 125 C, but with stipulated Vstress.
- However these techniques need careful Prior Study and
- Very helpful in reducing the cycle time on the subsequent *ORM to achieve cost savings.

*ORM: Ongoing Reliability Monitoring

Extended / Accelerated Burn-In Implementation for Cycle Time & Cost Savings

Heating Up - Burn-in and Thermal

Extended / Accelerated Burn-In

- The standard ELFR and HTOL stresses are generally accelerated stresses to assess the Early Failure and Useful Life of Products in the Field.
- The acceleration in the conventional Burn-In or HTOL is done on both Voltage and Temperature upto 1000hours of stress.
- > The stress temperature is either 105C or 125C as per the Products Grade.
- > This is generally called the Standard Burn-In or HTOL.
- After these tests are done and (say) the process and robust product design are able to Pass the tests with a lot of margin.
- > This shows that both the process and product design have room for extension.
- Which can be used to further extend the stress by increasing the stress voltage or temperature, generally referred to as Extended Accelerated Burn-In.

Heating Up - Burn-in and Thermal

Extended Acceleration: Methodology

The further Extended Accelerated Burn-In can be done in two ways to reduce the overall stress time, equivalent to standard burn-in.

- Increasing the Stress Voltage further but keeping same stress Temperature.
- Increasing the Stress Temperature further but keeping stress voltage same.
- This is done by demonstrating the guaranteed 10years field life, with extension of either the stress voltage or the temperature.
- •
- The actual stress duration with extended accelerated stress will be <1000hrs.
- Still based on the same Thermal & Voltage Models used for HTOL stress.

Extended / Accelerated Burn-In Implementation for Cycle Time & Cost Savings

BiTS 2018

Heating Up - Burn-in and Thermal

The FIT rate is calculated based on a certain confidence level as explained below:

FITS =
$$\frac{\chi^2_{C,V=2r+2} (10^9)}{2 (SampleSize) (Hours) (A_F)}$$

Where "Chi-Sq" Is the chi-squared value; "C" is the Confidence Level used; 2r + 2 = is the Degrees of Freedom and "r" is the number of failures.

The Total Acceleration Factor A_F is:

$$A_F = A_V X A_T$$

Where **AT** is the Thermal Acceleration Factor and **AV** is the Voltage Acceleration Factor.

Extended / Accelerated Burn-In Implementation for Cycle Time & Cost Savings

Acceleration Factors

The Thermal Acceleration factor AT is given by the Arrhenius relationship

$$AT = Exp [Ea / k (1/T_{use} - 1/T_{stress})]$$

where

Ea = Activation energy at steady state (typically 0.7 eV) k = Boltzmann constant = 8.617 X 10-5 eV/K T_{stress} = Stress ambient temperature in Kelvin T_{use} = Operating ambient temperature in Kelvin

The Voltage acceleration factor AV is given by: Power Law / Exponential Law

AV = (V1 / V2)<sup>-
$$\beta$$</sup> (or) Exp [β * (V_{stress} - V_{use})]

where

V1 = Operating voltage in V; V2 = Stress voltage in V;

 β = Voltage constant (Varies 2 to 22 based on technology node Wei-Bull Slope)

Extended / Accelerated Burn-In Implementation for Cycle Time & Cost Savings

Heating Up - Burn-in and Thermal

Effect of Thermal Acceleration

Burn-In Conditions: Sample Size = 360; **Stress Voltage : 1.1xVdd**

The following table shows the increase in the Temperature Acceleration Factor when BI Temperature is increased, in steps of 5 °C and the reduction in the equivalent HTOL hours required to BI.

Burn-in Temp. (°C)	Temperature Acceleration wrt Ta=55°C	IM & HTOL Burn-in Hours	Number Of Days	Reduction In Burn-in Time (# Cum. Days)	Required Qual. Time (with ROs)
125	77.9	1000	42	0	58
130	100.4	640	27	15	43
135	128.5	500	21	21	37
140	163.6	394	17	25	33
145	206.9	312	13	29	29
150	510.4	248	11	31	27

Heating Up - Burn-in and Thermal

Effect of Voltage Acceleration

Burn-In Conditions : Sample Size = 360; Stress Temperature = 125°C

The following table shows the increase in the Voltage Acceleration Factor when the Stress Voltage is increased, in steps of 10% of Vnom and the reduction in the equivalent HTOL hours required to BI

Stress Voltage (X Vdd)	Voltage Acceleration Factor	IM & HTOL Burn-in Hours	Number Of Days	Reduction In Burn-in Time (# of Days)	Required Qual. Time (with ROs)
1.1	1.21	1000	42	0	58
1.2	1.44	694	29	13	45
1.3	1.69	590	25	17	41
1.4	1.96	510	22	20	38
1.5	2.25	444	19	23	35

Combined Thermal & Voltage Acceleration

Burn-In Conditions : Sample Size = 360; Vstress: In steps of 10%; Tstress: 5°C steps

The following table shows the increase in the Voltage and Temperature Acceleration Factors when the Stress Voltage and Temperature are increased and the reduction in the equivalent HTOL/BI hours.

BI Temp. (°C)	Thermal Acc. (AT) wrt Ta=55°C	Stress Voltage (xVdd)	Voltage Acc. (AV)	HTOL Burn-in Hours	# of Days	Reduction In BI Time (# of Days)	Qual. Time Needed (Inc. ROs)
125	77.94	1.1	1.21	1000	42	0	58
130	100.4	1.2	1.44	538	23	19	39
135	128.54	1.3	1.69	358	15	27	31
140	163.57	1.4	1.96	244	11	31	27
140	163.57	1.3	1.69	284	12	30	28
145	209.96	1.3	1.69	224	10	32	26
~							

Bits 2018

Heating Up - Burn-in and Thermal

Prior Requirements

The below are some of the pre-requisites that the process & products must satisfy as minimum requirements, before the Extended Accelerated BI can be implemented:

Process Stability & Maturity:

- The baseline process should be stable (on variability) and mature (D0 & yields).
- Baseline already passed its compliant Qualification to its grade: CE/Ind./Gr-2~3.
- Also should have enough Reliability margins after passing the standard Qual.

Product Design Maturity:

- The products' design should be robust and proven,
- Has already passed its compliant application grade Product Qual.
- Also should have Over Drive (on voltage/temperature) margins.

Heating Up - Burn-in and Thermal

Prior Requirements - 2

Stress Extension Studies:

- To be done both on Voltage & Temperature Extensions beyond the standard stress levels.
 - Done by DOE, to assess available margins both on stress voltage and temperature.
 - Margins on other Reliability (Viz: FEOL, MOL, BEOL) and
 - Process Defect Mechanisms to be checked.
- Some process and Technology nodes might be sensitive to:
 - Extended Voltage (Vramp, GOI, HCI TDDB etc.,) and
 - Others to Temperature Extension (Ex: BTI, EM, SM etc.,)
- Best way is to run the procedure of "Qualifying a Process/Product for Higher Over Drive Voltage Applications" for checking the Voltage Extension and Overall margins.

Extended / Accelerated Burn-In Implementation for Cycle Time & Cost Savings

BiTS 2018

Heating Up - Burn-in and Thermal

Reliability Considerations

Reliability considerations are mainly:

- 1) Device Level / Intrinsic Reliability.
- 2) Circuit Level / Product Reliability.

1) Device Level Reliability considerations:

- > Parasitic Bipolar turn-on for (NMOS/PMOS)
- > BTI (Bias Temperature Instability)
- > TDDB (Time Dependent Dielectric Breakdown)
- > HCI (Hot Carrier Integrity)
- > EM (Electro-migration) Life Time
- Device Level Latch Up

Extended / Accelerated Burn-In Implementation for Cycle Time & Cost Savings

Session 7 Presentation 4

Heating Up - Burn-in and Thermal

2) Circuit Level Reliability Considerations:

- Circuit Level Reliability Evaluation Results
- Package Reliability Evaluation Results.
- Local / Joules' heating
- Package-Level Latchup
- Dynamic High-Voltage Stress Test Evaluation

Extended / Accelerated Burn-In Implementation for Cycle Time & Cost Savings

Bits 2018

Heating Up - Burn-in and Thermal

REL Items Table: Device & Circuit

After doing the Reliability assessments, compile all the results in to a table:

Check Item	Sub	1.1xVdd	1.2xVdd	1.3xVdd	1.4xVdd	1.5xVdd	1.6xVdd
Ri-Polar Turn On Voltago	NMOS					Extended Margin On Over Drive	X
Bi-Folar fulli Oli voltage	PMOS						
DTLL if a firm a	NMOS						X
DITLIEUMe	PMOS						X
HCI L ifotimo	NMOS						Х
	PMOS						X
TDDP Lifetime	FEOL			Base Line Qual			
	BEOL						X
EM Lifetime	BEOL					Voltage	X
Latohun	Device						
Latenup	Package						Х
Thermal Acceleration	Tjstress						X
JH & Package	Tjstress						X
HTOL @ OD Voltage & 125C	@HSV						x
est Strategies Workshop C Extended / Accelerated Burn-In Implementation for Cycle Time & Cost Savings 16							

BiTS 2018

Heating Up - Burn-in and Thermal

HTOL @ Higher BI/OD Voltage

- Complete table upto what voltage each item can pass.
- Select the column in which all Reliability items Pass.
- Plan and run actual HTOL at that stress voltage:
 Tj: 125C; Readouts: 24h, 48h, 168h, 500h, 1000h (per EOL Spec)
- > If no gross fails at readouts complete to final readout.
- > If there are gross fails do PFA to find the root cause.
- \succ Reduce Vstress to one step below (Ex: 1.3 to 1.4xVnom).
- \succ Re-run HTOL at that voltage to confirm that as the OD.

Bits 2018

Heating Up - Burn-in and Thermal

Prior Checks & Evaluation Studies

Limits to Apply:

- Even after the process and products show extendable margins on stress voltage and/or temperature, it should not be taken granted that the stress can be easily extended.
- Below parameters should be checked to ensure that with the extended voltage and temperature stress, the packaged modules are not going into "Thermal Run-away" mode.
 - Increase in Istb, Dynamic Idd and leakage Currents (GIDL, DIBL, Isub etc.,),
 - Effect of frequencies: Ring Oscillators and VCO's at higher temperatures etc.,

Test and Stress Hardware:

- Both stress and test hardware should be checked for extended voltage and temperature ranges and designed accordingly.
- With prior planning & design, to suit for this extended stresses, the same hardware can be used for both Standard Burn-In and Extended Accelerated Burn-In.

Your Paper Title Here: BiTS Presentation Guide & Template 1.0

BiTS 2018

Heating Up - Burn-in and Thermal

This methodology is best suitable for the following:

- Stable Process with robust Products' design that have margins on:
 - Extendable stress temperature
 - (and / or)
 - Extendable stress voltage.
- > Best suitable for Process and Products with:
 - Baseline & Over Drive (Voltage/Temp) Customers to support.
 - Low Leakage Devices
 - Low or Super Low Power (LP/SLP)
 - Ultra Low Power (ULP) and
 - Ultra Low Leakage (ULL).

Extended / Accelerated Burn-In Implementation for Cycle Time & Cost Savings

Heating Up - Burn-in and Thermal

Extended Accelerated BI Experiment

- Accelerated Burn-In planned with standard & extended Voltage and Thermal Levels.
- The selection of these levels was done after studying and comparing different levels as below.
- This experimental Burn-in consists of two flows:

Parameter	FLOW – A (Standard Flow)	FLOW – B (Extended Flow)
Burn-In Temperature	125 °C	140 °C
Stress Voltage	1.1 x Vdd-nom	1.3 x Vdd-nom
	48 Hrs	17 Hrs
	168 Hrs	58 Hrs
Read Out Points	500 Hrs	172 Hrs
	1000 Hrs	342 Hrs

Note: For Flow-B Equivalent hours calculated based on Voltage & Thermal Acceleration Factors.

Extended / Accelerated Burn-In Implementation for Cycle Time & Cost Savings

Burn-in & Test Strategies Workshop

BiTS 2018

Heating Up - Burn-in and Thermal

Experimental Results Comparison

The test results were compiled and tabulated for both the Flows:

FLOW – A (Standard Flow)			FLOW – B (Accelerated Flow)			
Read Out	Test Results		Read Out	Test Results		
Points	PASS	FAIL	Points	Test Re PASS 2 228 2 228 2	FAIL	
48 Hrs	229	2 BIN7	17 Hrs	228	2 BIN7, 1 BIN4	
168 Hrs	228	1BIN4	58 Hrs	228	-	
500 Hrs	228	-	172 Hrs	228	-	
1000 Hrs	228	-	342 Hrs	228	-	

Note: FA done on fails confirmed the fail mode was not due to due to higher temperature (de-laminations) or due to higher voltage stressing (such as EOS)

Extended / Accelerated Burn-In Implementation for Cycle Time & Cost Savings

Burn-in & Test Strategies Workshop

BiTS 2018

Heating Up - Burn-in and Thermal

BiTS 2018

Heating Up - Burn-in and Thermal

Burn-in & Test Strategies Workshop

BiTS 2018

Heating Up - Burn-in and Thermal

BiTS 2018

Heating Up - Burn-in and Thermal

Analysis of Useful Life on Accelerated Flow

Burn-in & Test Strategies Workshop

www.bitsworkshop.org

Heating Up - Burn-in and Thermal

Comparison of Parameters for Both Flows

The below statistical parameters from the Fail Rate Analysis are compared for both Flows:

Parameter	Standard Flow	Accelerated Flow
Shape Factor	1.0	1.0
Scale Factor	114334	78575
MTTF	114334	78575
Goodness of FIT (AD*)	26.2	26.3

- The Shape factors are exactly = 1 indicating the HTOL Stage for both flows.
 - The Constant Instantaneous Failures Rate / Hazard Rate which is characteristic of "Useful Life" of the "Bath Tub Curve" is seen and established here.
- Ratio of scale factors = Ratio of the MTTFs = 114334/78575 = 1.46.
- The Anderson Darlington's Goodness of FIT in both the cases are almost same.

Implementation on Other Nodes & Savings

The below table summarizes different projects that are implemented using this concept on different technology nodes:

	Tech Node	Std. BI	Acc. BI	% Cycle Time Reduction	% Savings
	0.5	Vst: 1.2xVnom	Vst: 1.2xVnom	28%	32%
	v.sum	Tst: 125C, 1Khrs	Tst: 145C, 768hrs	28%	
	0.35.00	Vst: 1.2xVnom	Vst: 1.2xVnom	280/	32%
	0.35um	Tst: 125C, 1Khrs	Tst: 145C, 768hrs	28%	
	0.25	Vst: 1.1xVnom	Vst: 1.3xVnom	63%	60%
	0.25um	Tst: 125C, 1Khrs	Tst: 140C, 342hrs	05%	
	40.000	Vst: 1.2xVnom	Vst: 1.4xVnom	220/	42%
	401111	Tj: 125C 1000hrs	Tj: 132C 638hrs	32%	
<u> </u>	14nm	Vst: 1.4xVnom	Vst: 1.5xVnom	220/	260/
		Tj: 125C, 500hrs	Tj: 125C, 168hrs	33%	30%
Test Strategies Workshop		Extended / Accelerated B	urn-In Implementation for Cycle Tir	ne & Cost Savings	

BiTS 2018

Heating Up - Burn-in and Thermal

Advantages of Accelerated BI

> No Additional Costs on H/W: With prior planning existing test/stress hardware can be used.

This can be done while designing the stress and test hardware for higher voltages and temperatures at which the extended Accelerated BI is planned.

> Faster Cycle Time: It was shown to have 30~50% cycle time on stress can be achieved.

Faster Feedback to Process/Product *CIPs: With @ 30 to 50% improvement in the stress cycle time, the feedback on failures if any to Process or product design will be faster.

- Cost Savings: With lesser stress hours Vs 1000hrs,
 - > The stress duration on Ongoing Reliability Monitoring (ORM) can be reduced
 - > There by bringing in $30 \sim 50\%$ cost savings per run.
 - > If ORMs are run every month, significant cost savings can be accumulated over a year.

*CIPs: Continuous Improvement Process

Extended / Accelerated Burn-In Implementation for Cycle Time & Cost Savings

Heating Up - Burn-in and Thermal

Advantages - 2

- Faster Reliability Assessments: Any subsequent qualifications or reliability assessments on Process or products will also see the benefits of reduced stress hours, such as:
 - > Very useful for any sudden variations in process and/or
 - > To assess Maverick lots' Reliability assessments.
- Better Utilization of Ovens & Testers: With reduced overall stress duration the stress and test hardware can be used for other purposes.
- Operational Advantages: With reduced overall stress the Lab Operations will be less and more operational Cost savings.

Extended / Accelerated Burn-In Implementation for Cycle Time & Cost Savings

Heating Up - Burn-in and Thermal

Conclusion

- It is shown that by implementing the Extended Accelerated Burn-In, upto 30~50% of overall stress duration can be reduced Vs standard 1000 hours HTOL.
- Still technically able to demonstrate equivalent useful life time coverage.
- The reduced stress hours are translated to significant cost savings when this concept was used on continuous Process Reliability Monitoring Programs.
- Especially very useful, if few Fabs/products are using the same technology and those Fabs need to run Process/Product Reliability monitoring.

Extended / Accelerated Burn-In Implementation for Cycle Time & Cost Savings

Heating Up - Burn-in and Thermal

References

- **JESD22A-108:** Temperature, Bias, and Operating Life Test specification by JEDEC, Solid State Technology Association.
- **JESD-47:** Stress-Test-Driven Qualification of Integrated Circuits by JEDEC, Solid State Technology Association.
- **JP-001:** Foundry Process Qualification Guidelines for Wafer Fabrication Manufacturing Sites, by JEDEC.
- **JESD659:** Failure-Mechanism-Driven Reliability Monitoring, Electronics Industries Alliance, JEDEC Solid State Technology Association
- Qualifying A Process or Product For Higher Burn-In Voltage/Over Drive Application, by Krishna Mohan Chavali, BiTS-2017 Workshop Presentation, Mesa, Arizona.
- Statistical Method for Setting up Safe Screen Voltage for Products, by Krishna Mohan Chavali, BiTS-2017 Workshop Poster, Mesa, Arizona.

Extended / Accelerated Burn-In Implementation for Cycle Time & Cost Savings