NINETEENTH ANNUAL Burn-in & Test Strategies Workshop

March 4 - 7, 2018

Hilton Phoenix / Mesa Hotel Mesa, Arizona

COPYRIGHT NOTICE

The presentation(s)/poster(s) in this publication comprise the Proceedings of the 2018 BiTS Workshop. The content reflects the opinion of the authors and their respective companies. They are reproduced here as they were presented at the 2018 BiTS Workshop. This version of the presentation or poster may differ from the version that was distributed in hardcopy & softcopy form at the 2018 BiTS Workshop. The inclusion of the presentations/posters in this publication does not constitute an endorsement by BiTS Workshop or the workshop's sponsors.

There is NO copyright protection claimed on the presentation/poster content by BiTS Workshop. However, each presentation/poster is the work of the authors and their respective companies: as such, it is strongly encouraged that any use reflect proper acknowledgement to the appropriate source. Any questions regarding the use of any materials presented should be directed to the author(s) or their companies.

The BiTS logo and 'Burn-in & Test Strategies Workshop' are trademarks of BiTS Workshop. All rights reserved.

A Better Workhorse - Burn-in Printed Circuit Boards & Solutions

A Better Workhorse - Burn-in Printed Circuit Boards & Solutions

Burn-in & Test Strategies Workshop

BiTS 2018

www.bitsworkshop.org

March 4-7, 2018

A Better Workhorse - Burn-in Printed Circuit Boards & Solutions

UHPBI, <u>U</u>Itra <u>High Power Burn-in</u>

Background

Bits 2018

- Challenges
- Socket Design
 - Thermal Simulation
 - Testing Data I
 - Testing Data II
- UHPBI Oven Solution
- Burn-in board Solution
- Roadmap

UHPBI (Ultra High Power Burn-in)

3

BiTS 2018

Challenges Material, Life time, Mass Production, & Cost are all in high threshold How to improve heat sink thermal limitation better? High volume loading require fast load / un-load operation Difficult hardware maintenance during mass-production Good heat-dissipation for Printed Circuit Board (PCB) and Socket Thermal Interface Material (TIM) selection, innovation, etc. 5 UHPBI (Ultra High Power Burn-in)

Socket Design Normal Bad Good 0 0 Δ Type-A Type-B Type-C Rotate design \bigcirc 0 Δ Stopper design Δ Δ 0 Temperature (Tj & Tc) \bigcirc \bigcirc 0 Thermal control \bigcirc \bigcirc 0 **DOE-A** DOE-B signal testing Witness mark Supply voltages Scratch(10 insertions) Current measurements Warpage Temperature (Tj & Tc) 66 Prevent Die crack UHPBI (Ultra High Power Burn-in) urn-in & Test Strategies Workshop

Bits 2018

A Better Workhorse - Burn-in Printed Circuit Boards & Solutions

Burn-in & Test Strategies Workshop

BiTS 2018

A Better Workhorse - Burn-in Printed Circuit Boards & Solutions

Burn-in & Test Strategies Workshop

Bits 2018

Testing Data - II																									
	#IC	IDDQ (A) 0.725v/85C 139.90 155.50 58.16		SPEEDO		TileC		١	/1	otal power	Ratio 3.38 2.79 3.84	Remark Type-A*, work well Mbist pattern fail			B/L condition:										
				C 0.725v/8		125	110.0	(A)	(W)	(W)					v	V2		V3		V4		V5			
*	#80 #57			2097.00		135	118.8	473.3	488.3	541.4 496.8					1.1	1.1V		1.485V		1.98V		2.5V			
#	#30			2014.88		135	115	223.5	251.4	257.5					(A)	(W)	(A)	(W)	(A)	(W)	(A)	(W)	(A)	(W)	
#	‡26	61.70		2057.24		135	115	234.6	263.9	270.4	3.80				473.3	532.5	3.6	4.0	3.0	4.4	0.2	0.4	0.1	0.2	
				Tvn				-Δ			Т	vn	ρ-Δ*	223.5	251.4	1.7	1.9	2.5	3.6	0.2	0.4	0.1	0.3		
		Device #80 #57					JPC-A					Турс А			234.6	263.9	1.9	2.1	2.6	3.8	0.2	0.4	0.1	0.3	
	D			тс		٩G	MBIS	ST	CLK	ТС	JTA	G MBIST		CLK											
										116.1	464	.5	473.5	466.3											
				2.7	433	3.4	440.	3 4	138.3	115.9	439	.7	446.7	440.7											
	#26		11	115.3		2.5	235.	6 2	232.4	112.2	227	.3	230.4	229.5											
		#30		15.1 218.0		219.0 217.9		113.4	220	.7	224.5	223.2													
BITC	10	0	# <u>1</u> # <u>1</u>	ype- ype-	-A* -A*	to ii hea	npro t sinl	ve ti k co	herm uld h	al perfo andle 5	rman 40~w	ice at	e in betw t, close i	veen de to simu	vice & lation	<mark>z hea</mark>	t sir	<u>nk</u>							
Burn-in & Test Strategies Worksho) C			UHPBI (Ultra High Power Burn-in)														10							

BiTS 2018

A Better Workhorse - Burn-in Printed Circuit Boards & Solutions

BiTS 2018

A Better Workhorse - Burn-in Printed Circuit Boards & Solutions

Burn-in & Test Strategies Workshop

Bits 2018

A Better Workhorse - Burn-in Printed Circuit Boards & Solutions

A Better Workhorse - Burn-in Printed Circuit Boards & Solutions

Burn-in & Test Strategies Workshop

Bits 2018

A Better Workhorse - Burn-in Printed Circuit Boards & Solutions

