Archive

Burn-in & Test Strategies Workshop

www.bitsworkshop.org

September 6-7, 2017

COPYRIGHT NOTICE

This multimedia file is copyright © 2017 by BiTS Workshop. All rights reserved. It may not be duplicated or distributed in any form without prior written approval.

The content of this presentation is the work and opinion of the author(s) and is reproduced here as presented at the 2017 BiTS China Workshop.

The BiTS logo, BiTS China logo, and 'Burn-in & Test Strategies Workshop' are trademarks of BiTS Workshop.

Session 2 Presentation 2

BiTS China 2017

SiP Test & Contact Technology

Socket Material Characterization & Selection

Jinrong Chen (Cleveland) Jiachun Zhou (Frank) Smiths Interconnect

BiTS China Workshop Shanghai September 7, 2017

Smiths interconnect

SiP Test & Contact Technology

BiTS China 2017

Contents

- Material Selection: Challenge for Engineer
- Polymers & Composites Basic
- Key Considerations in Material Selection
- Socket Materials Comparison
- Material Selection Steps
- Material Verification
- Summary

Socket Material Characterization & Selection

Burn-in & Test Strategies Workshop

SiP Test & Contact Technology

Material Selection: Challenge for Engineer

Many material options...

- Different categories & grades
- Reinforcement, Filling & Polyblends
- Different kinds of properties
- Different forming processing
- Different suppliers
- Efficiency & Cost...

Complicated applications...

- IC type, pin count & pitch
- WLP or End testing
- ATE, SLT or manual test
- Environment and duration time
- Electrical
- Precision & stability
- Wear, thermal concern
- Reliability
- Life

So many factors and concerns!!!

Socket Material Characterization & Selection

Burn-in & Test Strategies Workshop

SiP Test & Contact Technology

BiTS China 2017

Material Selection: Challenge for Engineer

Material standard test data...

- Laboratory tests, ambient temperature / humidity
- ASTM test usually with variables fixed except the one being measured
- Not for predicting real-life results, but actually quality test for their own use

Real life application...

- Testing setting
- Combination of variables, temperature, varying loads, changing outside environments
- Creep and stress relaxation
- Interaction of different factors

Comparing the results of published specifications is not sufficient!

Socket Material Characterization & Selection

SiP Test & Contact Technology

Material Selection:Challenge for EngineerEnd-user'sEngineer'sexpectationrecommendation

Burn-in & Test Strategies Workshop

www.bitsworkshop.org

September 7, 2017

SiP Test & Contact Technology

Polymers & Composites Basic

Plastics - "Polymers"

Poly (many) Mer (Unit): A large molecule made up of one or more repeating units(mers) linked together by covalent chemical bonds.

Composites

Polymer matrix, PMC / FRP Ceramic matrix, CMC Metal matrix, MMC

- Metals, IM
- Ceramics Photoveel II, & "-S"

Socket Material Characterization & Selection

Burn-in & Test Strategies Workshop

SiP Test & Contact Technology

Polymers & Composites Basic Plastics - "Polymers" classification: *extensive and confusing...*

Broad category

Thermoplastics & Thermosets

By Structure

Crystalline, amorphous & liquid crystalline

Others

Copolymers, alloys, elastomers

Socket Material Characterization & Selection

Burn-in & Test Strategies Workshop

Session 2 Presentation 2

BiTS China 2017

SiP Test & Contact Technology

Polymers & Composites Basic "Polymers" performance pyramid

Burn-in & Test Strategies Workshop

SiP Test & Contact Technology

Polymers & Composites Basic Why Composites?

Burn-in & Test Strategies Workshop

www.bitsworkshop.org

9

SiP Test & Contact Technology

Polymers & Composites Basic

Common Matrix for PMC / FRP

Peek Polyetheretherketone Ultem Polyetherimide (PEI) Torlon Polyamide-imide (PAI) Vespel Polyimide based (PI)

Additives, Reinforcements and Fillers

 Physical properties
 modified
 Mechanical
 Properties
 increased

Fillers

Glass Spheres Carbon Black Metal Powders Silica Sand Wood Flour Ceramic Powders Mica Flakes Molybdenum Disulfide

Reinforcing Fibers

Glass Fibers Carbon Fibers Aramid Fibers Jute Nylon Fibers Polyester Fibers

Other Additives UV Stabilizers

UV Stabilizers Plasticizers Lubricants Colorants Flame Retardants Antioxicants Antioxicants Antistatics Preservatives Processing Aids Fungicides Smoke Supressants Foaming Agents Viscosity Modifiers Impact Modifiers

Socket Material Characterization & Selection

Burn-in & Test Strategies Workshop

SiP Test & Contact Technology

Polymers & Composites Basic

Category		Peek	Ultem	Torlon	Vespel	
Chemical name		Polyetheretherketone	Polyetherimide	Polyamide-imide	Polyimide based	
Abbreviation		Peek	PEI	PAI	PI	
中ス	と 译名	聚醚醚酮	聚 醚酰亚胺	聚 酰胺酰亚胺	聚酰亚胺	
Chara	octeristic	Semi-crystalline, Amorphous, Ar prganic, thermoplastic thermoplastic		Amorphous, thermoplastic/therm osetting	s, Ring-shaped therm molecular, containing Nitroge	
	Unfilled	Tecapeek	Ultem 1000	4203	SP1, SCP5000	
	Glass Fiber	Peek GF20, Peek GF30	Utlem 2300	5030,5530 (30%)	N/A	
	Carbon Fiber	Peek CF30	12%, 30%	7130 (30%)	N/A	
Additives, Reinforce	Carbon Nano Tube	Nano ESD PEEK; EKH-SS11	ESD ULTEM	Semitron ESD 520HR	N/A	
ments and Fillers	PTFE	Peek TF20, Peek TF15	Ultem 4000 (CF, Graphite)	4301,4501	SP-211 (with Graphite)	
	Ceramic	Tecapeek CMF, EPM-2204U-W	N/A	N/A	N/A	
	Graphite	N/A	Ultem 4000 (CF, PTFE)	4301, 4501	15% SP-21; 40% SP-22; SCP5009	
	Others	Peek Rigid	N/A	N/A	SP3	

Socket Material Characterization & Selection

11

Burn-in & Test Strategies Workshop

SiP Test & Contact Technology

BiTS China 2017

Key Considerations in Material Selection

- Material Strength
- Dimensional Stability
- Wear Resistance
- Thermal Properties
- RF Performance
- Manufacturing Capability, Efficiency & Cost

Socket Material Characterization & Selection

Burn-in & Test Strategies Workshop

SiP Test & Contact Technology

Key Considerations in Material Selection

Material Strength

Main part subjected to loading: Socket body

• Spring probe preload force

BC state: static force, vary from
 high(outer edge) to low(center)

- Testing state: no force
 *Cyclic force while testing
- Impact loading
- No Docking plate setup:
 *Cyclic impact force

Socket Material Characterization & Selection

Burn-in & Test Strategies Workshop

www.bitsworkshop.org

13

SiP Test & Contact Technology

Key Considerations in Material Selection

Material Strength

Relative material properties:

- Flexural strength and modulus
- Keep enough preload
- *Temp. raise, modulus decrease*
- Part structure

*Metal Frame to improve strength

- Fatigue (ATE testing)
- Mechanical deterioration
- Impact strength /Toughness
- o Izod impact
- Part shape, size and thickness

Socket Material Characterization & Selection

Burn-in & Test Strategies Workshop

SiP Test & Contact Technology

Key Considerations in Material Selection Material Strength

- Modulus behavior Vs Temp.
- Temp. increase to Tg, modulus gradually drop
- Reinforced fiber improve the modulus of crystalline significantly

Burn-in & Test Strategies Workshop

SiP Test & Contact Technology

Key Considerations in Material Selection Material Strength

SiP Test & Contact Technology

Key Considerations in Material Selection Dimensional Stability

Fine pitch, multi-sites socket and Tri-temp. testing

Relative material properties:

- Water/moisture absorption
- Lower, the better
- Pocket size
 Verification
 test:

Coefficient of Linear Thermal Expansion

- o Lower, the better
- o CLTE match / close

Socket Material Characterization & Selection

Burn-in & Test Strategies Workshop

SiP Test & Contact Technology

Key Considerations in Material Selection Wear Resistance

Identifying the component most likely to encounter wear

- Alignment plate or Floating base
- PKG substrate VS guiding wall

- Pin housing
- Spring probe VS cavity hole
 Stamping pin VS slot cavity
 *Celsius Socket

Relative motion points

The comparison of wear resistance testing provides information critical in material selection.

Socket Material Characterization & Selection

SiP Test & Contact Technology

Key Considerations in Material Selection Thermal Properties

Consider extreme operating temp. and duration -55°C to +175°C ITRS2007 & AEC-Q100 specified

- HDT, Heat Deflection Temperature
- Continuous Service Temperature

Burn-in & Test Strategies Workshop

SiP Test & Contact Technology

Key Considerations in Material Selection RF Performance

Dielectric Constant / RF Comparison

No significant variance for common plastics, Dk3 to 4

• Test configuration Top: Target

Btm: PCB

Dielectric constant comparison

Doromotor	PEEK	Vespel	MDS-	PEEK	
Falameter	Ceramic	SCP5000	100	Rigid	
Dk	4.19	2.98	3.37	3.594 0.014	
TanD	0.011	0.011	0.007		

Socket Material Characterization & Selection

Burn-in & Test Strategies Workshop

SiP Test & Contact Technology

Key Considerations in Material Selection RF Performance

• Characteristic Summary (by using ADS software optimization)

Socket Material	Pitch (mm)	Single -End Test Case	Loop Inductance L (nH)*	Capacitance to Ground C (pF)*	Characteristic Impedance Zo (ohms)**	Time Delay Td (ps)**	Insertion Loss -1dB Bandwidth (GHz)	Return Loss 10dB Bandwidth (GHz)
Peek Ceramic	0.4	2A	1.0	0.4	53.5	18.8	26.5	23.0
Vespel SCP- 5000	0.4	2A	0.9	0.4	53.1	17.8	29.2	28.9
MDS- 100	0.4	2A	0.9	0.3	53.7	17.7	30.0	29.0
Peek Rigid	0.4	2A	1.0	0.4	54.4	18.2	28.8	23.4

Notes:

* Inductance and Capacitance values valid from 10 MHz to 3 GHz
** Impedance and Time Delay values valid form 10 MHz to 10 GHz

Socket Material Characterization & Selection

21

Burn-in & Test Strategies Workshop

SiP Test & Contact Technology

Key Considerations in Material Selection Manufacturing Capability, Efficiency & Cost Manufacturing Capability, Efficiency

- Ease of fabrication: Tg, Tensile elongation & fillers
- Higher Tg and lower Tensile elongation: easier
- Unfilled plastics: Softer, more difficult
- Filled plastics: Tendency to machine more cleanly; Dulls drill bits faster; More heat during drilling
- For large quantity, near neat shape/injection molding
 Cost
- Material unit cost: cost per cubic inch or cm
- Longevity: Creep & Stress relaxation, Aging
- HVM availability: supply vendors, delivery lead time

Socket Material Characterization & Selection

SiP Test & Contact Technology

Socket Materials Comparison

	Common Socket Material	EPM- 220411-	Peek	MDS	Ultem	Torlon	SCP-	Photoveel	
Property ASTM			W	Rigid	-100	2300	5530	5000	II-S
Strength	Flexural Modulus (Kpsi, 73°F)	D790	650	1965	1420	850	800	836	18854
	Izod Impact, Notched ft- Ibs/in, 73°F	D256	1	NA	0.73	1	0.61	2.39	NA
Dimension	Water Absorption(24 hrs (%), 73°F)	D570	0.06	0.02	0.1	0.18	0.3	0.08	0
Stability	CLTE, x10-5 in/in/°F	D696	2	1.4	1.1	1.1	2.6	2.6	2.6
Wear Resistance (Ranking)			5	3	4	NA	1	2	6
Tensile	Tensile Elongation at Break (%)		3.52	1.3	1.5	3	3	8	NA
Thermal	Heat Deflection Temp.@ 264psi, °F (°C)	D648	>500 (>260) (66psi)	NA	410 (210)	410 (210)	520 (271)	NA	NA
	Tg, amorphous, °F (°C)	D3418	290	313	350	410	527	752	NA
Electrical	Dielectric constant 1MHz, 50% RH	D150	4.71 (3.5 1K)	3.59	3.3	3.7 (1K)	6.3	3.3 (1GHz)	9 (1GHz)
Material stability factor *			3.3	14.0	12.9	7.7	3.1	3.2	72.5
Machine-ability factor *			2.6	0.8	3.5	1.0	1.3	7.4	NA
Relative Cost			\$\$\$	14x \$	15x \$	\$	7x \$	18x \$	58x \$
*2009 BiTS Workshop, The Evolution & Evaluation of Plastics Materials in Burn-in & Test Applications									

Socket Material Characterization & Selection

Burn-in & Test Strategies Workshop

Burn-in & Test Strategies Workshop

Session 2 Presentation 2

BiTS China 2017

SiP Test & Contact Technology

Burn-in & Test Strategies Workshop

Session 2 Presentation 2

BiTS China 2017

SiP Test & Contact Technology

Material Verification

- Lab test / measurement
- Customer experimental / application results

Accumulate experience for future!

Socket Material Characterization & Selection

Burn-in & Test Strategies Workshop

www.bitsworkshop.org

September 7, 2017

SiP Test & Contact Technology

Summary

- Material choice should be based on the best combination of properties, not only one property; best choice usually represents a trade-off among satisfactory properties, ease of processing, and cost; No "perfect" material exists for using in all socket types.
- Metal frame can be designed to increase the strength of socket Body.
- Spring probe loading to Socket is not static while testing.
- No big electrical property difference for current common Polymers and Composites for high speed testing.
 Understanding material characterizations well, and know the test application's environment & requirements well, then make a best choice!

Socket Material Characterization & Selection