Archive

Burn-in & Test Strategies Workshop

www.bitsworkshop.org

September 6-7, 2017

COPYRIGHT NOTICE

This multimedia file is copyright © 2017 by BiTS Workshop. All rights reserved. It may not be duplicated or distributed in any form without prior written approval.

The content of this presentation is the work and opinion of the author(s) and is reproduced here as presented at the 2017 BiTS China Workshop.

The BiTS logo, BiTS China logo, and 'Burn-in & Test Strategies Workshop' are trademarks of BiTS Workshop.

RF & High Speed Test

BiTS China 2017

100G Testing Fixture Design and Verification

Jackie Luo Shanghai Zenfocus Semi-Tech

BiTS China Workshop Shanghai September 7, 2017

Burn-in & Test Strategies Workshop

www.bitsworkshop.org

September 7, 2017

RF & High Speed Test

Agenda

- 100G High-Speed Interface Introduction
- 100G High-Speed Interface Testing
- 100G Testing Fixture Design
- Testing Verification based on PLTS
 (*Physical Layer Test System*)
- Conclusion

100G Testing Fixture Design and Verification

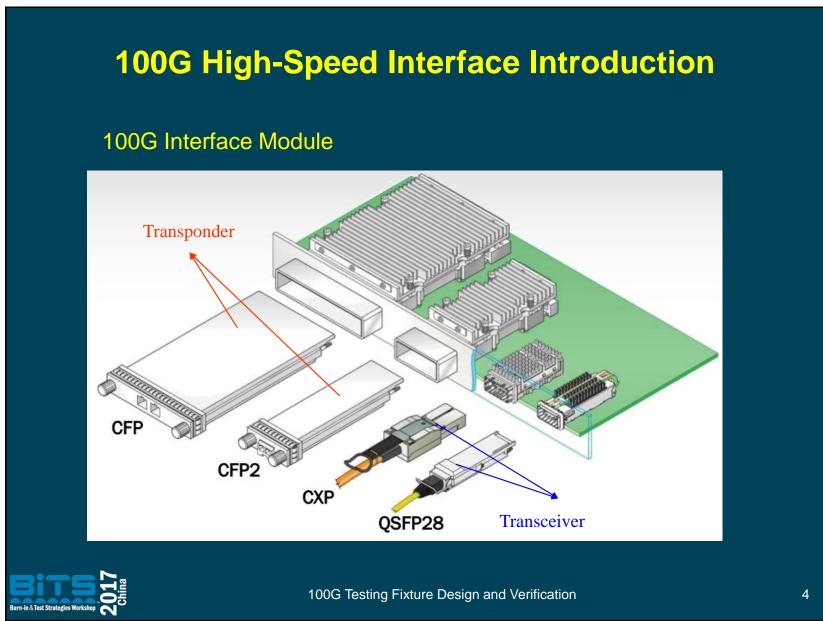
Burn-in & Test Strategies Workshop

RF & High Speed Test

100G High-Speed Interface Introduction

- Core/Data
- Switches
- Routers
- Servers
- Storage
- Standard I/O Interface
 - SFP+
 - QSFP+
 - miniSAS
 - ZQFP+

- ZQSFP+
- XCP
- CFP
- CFP2CFP4



100G Testing Fixture Design and Verification

Burn-in & Test Strategies Workshop

RF & High Speed Test

Burn-in & Test Strategies Workshop

www.bitsworkshop.org

September 7, 2017

RF & High Speed Test

100G High-Speed Interface Testing

Host-to-Module Electrical Specifications (host output)

Parameter	Min.	Max.	Units			
Differential input		See Equation	ďB			
return loss	-	See Equation	۵D	ſ	9.5 - 0.37f	$0.01 \le f < 8$
Common to differential				$RLd(f) \ge $, , , , , , , , , , , , , , , , , , , ,
mode conversion return	_	See Equation	dB	ning() =	$4.75 - 7.4 \log_{10}\left(\frac{f}{14}\right)$	8 ≤ <i>f</i> < 19
loss				l		J

Module-to-Host Electrical Specifications (host input)

Parameter	Min.	Max.	Units
Differential input return loss	_	See Equation	dB
Differential to common mode input return loss	_	See Equation	ďB

$$RLdc(f) \ge \begin{cases} 22 - 20\left(\frac{f}{25.78}\right) & 0.01 \le f < 12.89\\ 15 - 6\left(\frac{f}{25.78}\right) & 12.89 \le f < 19 \end{cases}$$

1

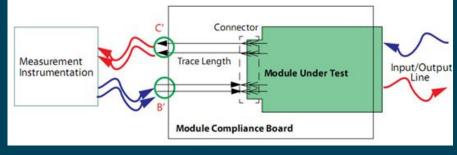
100G Testing Fixture Design and Verification

5

Burn-in & Test Strategies Workshop

RF & High Speed Test

100G High-Speed Interface Testing


• Based on IEEE802.3bm (CAUI-4) Specification

MCB : Module Compliance Board

Parameters to be Tested:

Test point: B' Module_OUTPUT_SDD11max Module_OUTPUT_SDC11max

Test point: C' Module_INPUT_SDD11max Module_INPUT_SCD11max

Burn-in & Test Strategies Workshop

100G Testing Fixture Design and Verification

Burn-in & Test Strategies Workshop

RF & High Speed Test

 $0.01 \le f < 8$

 $8 \le f < 19$

100G High-Speed Interface Testing

 $RLd(f) \geq \langle$

Module-to-Host Electrical Specifications (module output)

Parameter	Min.	Max.	Units
Differential input return loss	-	See Equation	dB
Common to differential mode conversion return	_	See Equation	dB
loss			

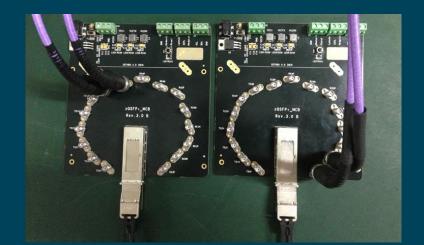
Host-to-Module Electrical Specifications (module input)

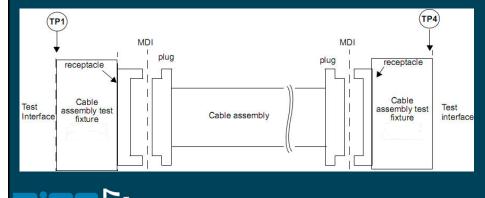
Parameter	Min.	Max.	Units
Differential input		See Equation	ďB
return loss	—	See Equation	ι Ψ
Differential to common		See Equation	ďB
mode input return loss	-	See Equation	æ

$$RLdc(f) \ge \begin{cases} 22 - 20\left(\frac{f}{25.78}\right) & 0.01 \le f < 12.89 \\ 15 - 6\left(\frac{f}{25.78}\right) & 12.89 \le f < 19 \end{cases}$$

9.5 - 0.37f

 $4.75 - 7.4 \log_{10} \left(\frac{f}{14} \right)$

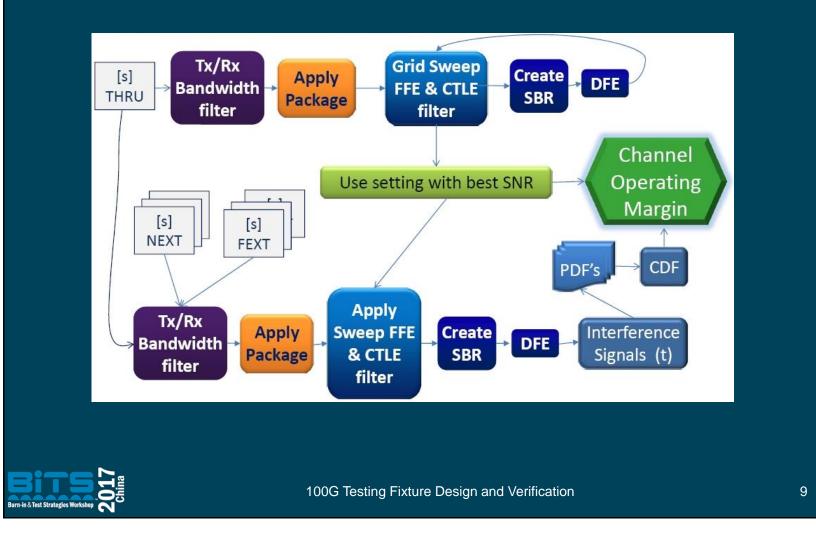

100G Testing Fixture Design and Verification


Burn-in & Test Strategies Workshop

RF & High Speed Test

100G High-Speed Interface Testing

• Based on IEEE802.3bj Specification


Parameters to be Tested: Insertion loss **Return loss Differential to common-mode** return loss **Differential to common-mode** conversion loss **Common-mode to common**mode return loss **COM** (Channel Operating Margin)

100G Testing Fixture Design and Verification

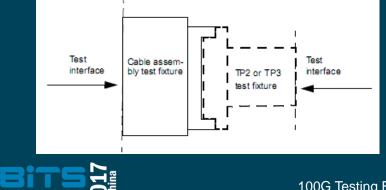
Burn-in & Test Strategies Workshop

RF & High Speed Test

100G High-Speed Interface Testing

Burn-in & Test Strategies Workshop

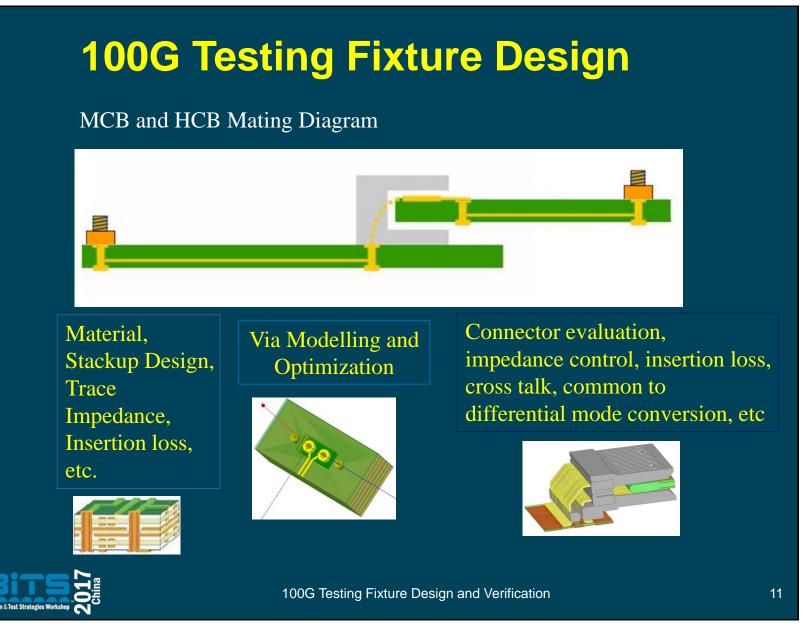

www.bitsworkshop.org


September 7, 2017

RF & High Speed Test

100G High-Speed Interface Testing

Fixture Mating Testing Based on IEEE802.3bj Specification

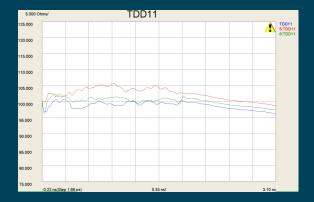


Parameters to be Tested: Insertion loss Return loss common-mode to Differential return loss Differential to common-mode conversion loss Common-mode to common-mode return loss Integrated crosstalk noise

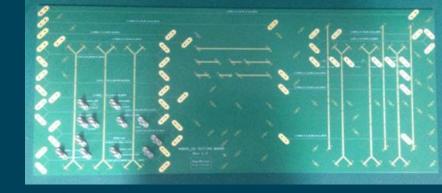
100G Testing Fixture Design and Verification

Burn-in & Test Strategies Workshop

RF & High Speed Test


Burn-in & Test Strategies Workshop

RF & High Speed Test

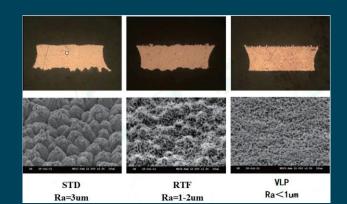

100G Testing Fixture Design

IL VS. Trace Width/Air Gap

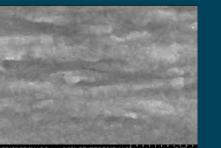
Impedance VS. Trace Width/Air Gap

Material Verification Board, use AFR (Automatic Fixture Removal) or PLTS ((Physical Layer Test System)) to do calibration, to get real performance of the material after fabrication

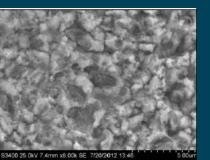
Burn-in & Test Strategies Workshop

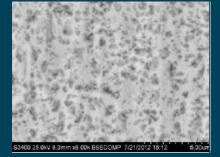

100G Testing Fixture Design and Verification

Burn-in & Test Strategies Workshop


RF & High Speed Test

100G Testing Fixture Design


copper foil Roughness



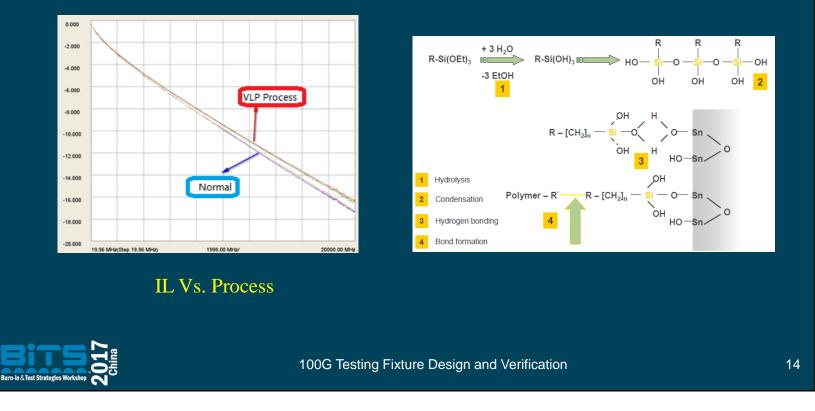
Different Processes contribute to different roughness after fabrication

Before Fabrication(VLP) After Traditional Process After low-roughness process

100G Testing Fixture Design and Verification

Burn-in & Test Strategies Workshop

www.bitsworkshop.org

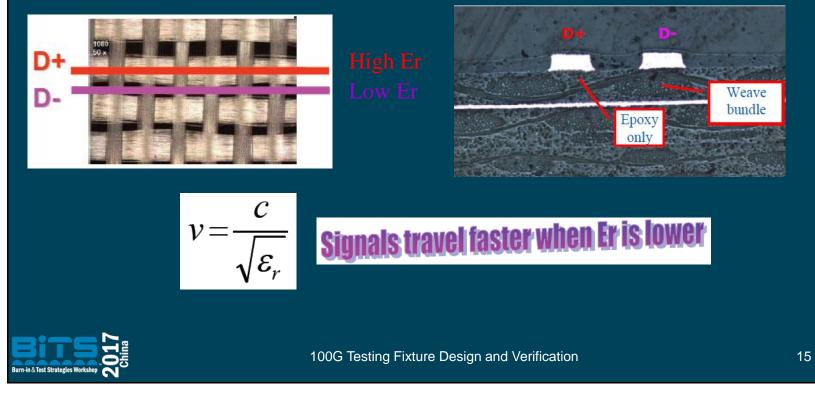

September 7, 2017

RF & High Speed Test

100G Testing Fixture Design

Low-Roughness Process

Take full advantage of HVLP copper foil


Burn-in & Test Strategies Workshop

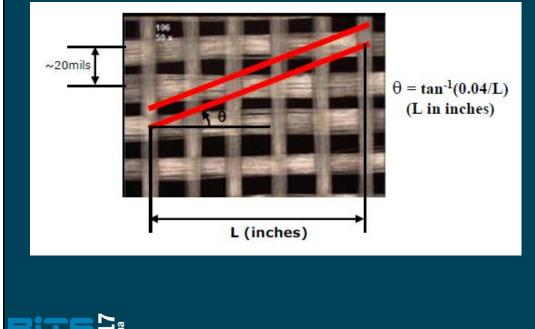
RF & High Speed Test

100G Testing Fixture Design

Glass Fiber Impact to Differential Signals

Differential signals transmit on High Er and Low Er media will have differential delays

Burn-in & Test Strategies Workshop


RF & High Speed Test

100G Testing Fixture Design

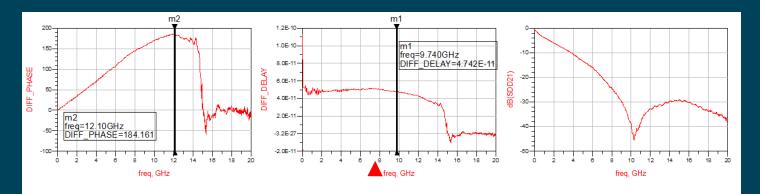
Glass Fiber Impact to Differential Signals

Improvement:

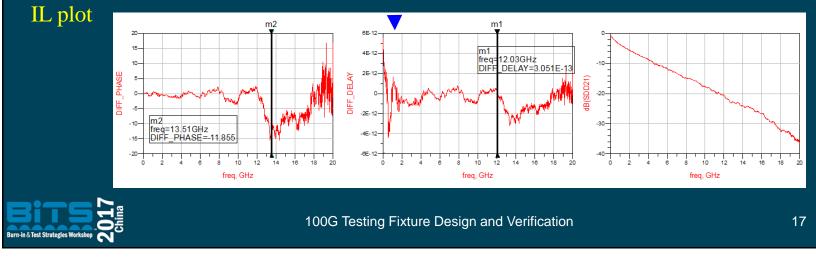
- 1. Design rotated traces;
- 2. Fabricated rotated patterns;

100G Testing Fixture Design and Verification

Burn-in & Test Strategies Workshop


www.bitsworkshop.org

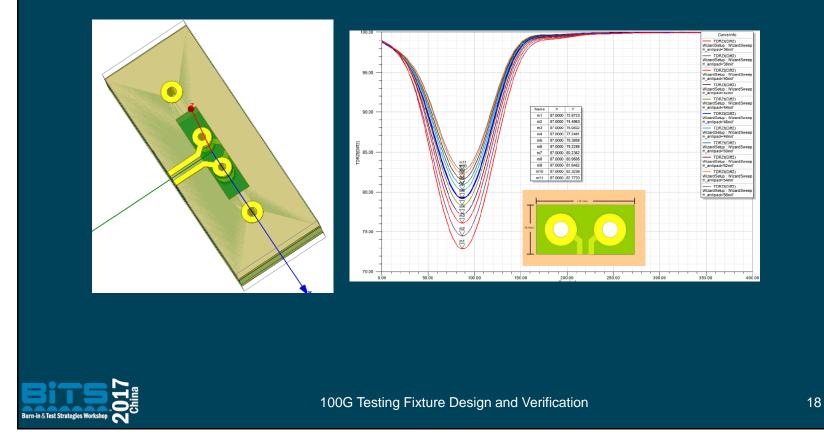
September 7, 2017


RF & High Speed Test

100G Testing Fixture Design

Material with issue, phase and delay will be abnormal, and has resonance in IL plot

Material without issue, the phase and delay will be normal, and has no resonance in

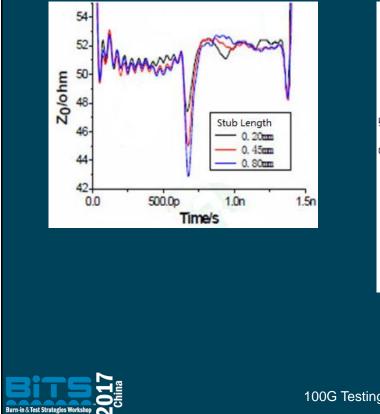


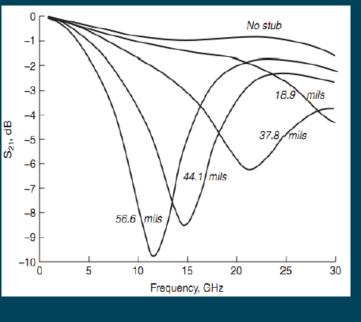
Burn-in & Test Strategies Workshop

RF & High Speed Test

100G Testing Fixture Design

Via Modelling and Optimization




Burn-in & Test Strategies Workshop

RF & High Speed Test

100G Testing Fixture Design

STUB length impact to signal Performance



100G Testing Fixture Design and Verification

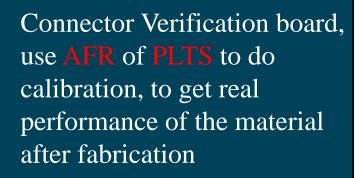
Burn-in & Test Strategies Workshop

RF & High Speed Test

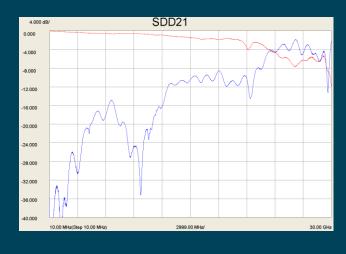
100G Testing Fixture Design

Connector Selection

- 1. Insertion Loss
- 2. Return Loss
- 3. Differential pair delay
- 4. Xtalk


100G Testing Fixture Design and Verification

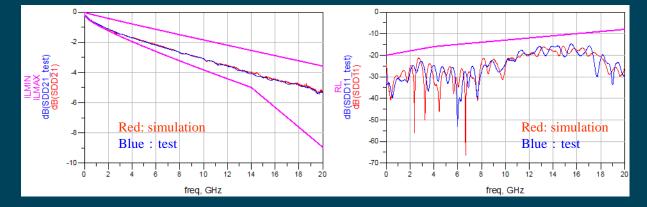
Burn-in & Test Strategies Workshop


RF & High Speed Test

100G Testing Fixture Design

3. Measure Standards	4. Rem	ove Fixture	5.	Save Fixture	٢	
1. Describe Fixture	2. Specify			y Standards		
This 5 step wizard characterizes an	id removes	the fixture eff	ects from y	our measurement	<u>t.</u>	
My fixture inputs are:						
Single Ended					Ш.	
ODifferential	- 7					
My measurement is:	с	urrent Fixture	and DUT A:	sumptions		
○1 Port		Fixture Match				
2 Ports		Fixture Length DUT ZO: will b		vstem ZO		
OMultiport 🚽						
Advanced Settings						
After fixture removal set Calib		eference ZO to				
⊙″System ZO″						
○Measured Fixture Z0						
0 50 Ohms						
Set "System ZO" to Calibrat:	ion Refe	rence ZO				
▼I want to correct for Fixture						
I want to correct for Fixture	Length	A ≠ B				
My fixture is band limited(us			mode)			
Lay ristare is band rimited (da	ie ballape	uo cimo uomain	2040/			
	N	ext	Exit	Help		

100G Testing Fixture Design and Verification


Burn-in & Test Strategies Workshop

O J

RF & High Speed Test

100G Testing Fixture Design

Get parameters from real evaluation board of material and connectors, then simulate to get the performance of the whole trace

This method works for long distance board also (40inch, Meet IEEE802.3bj Spec)

Burn-in & Test Strategies Workshop

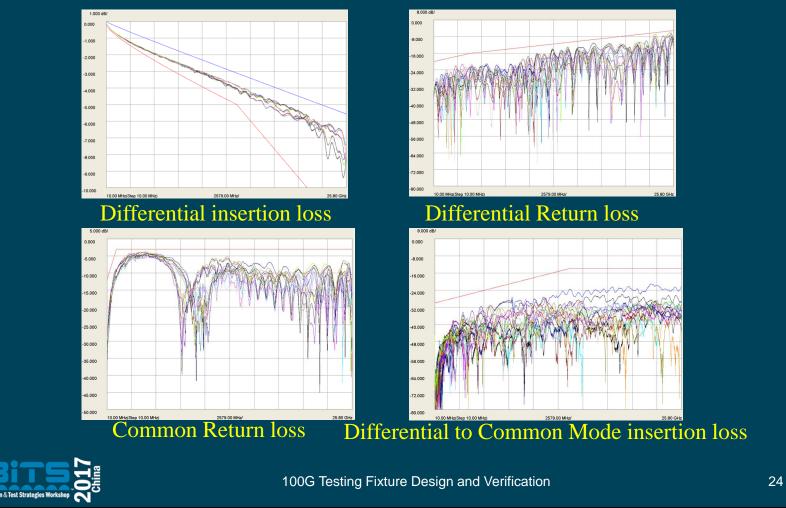
RF & High Speed Test

Fixture Verification based on PLTS

MCB and HCB Verification

Testing Setup :

- 1. Keysight PXI Modular network analyzer
- 2. PLTS physical layer testing SW
- 3. Calibration kits, Coaxial Cables, etc.


100G Testing Fixture Design and Verification

Burn-in & Test Strategies Workshop

RF & High Speed Test

Fixture Verification based on PLTS

Comparison with IEEE802.3bj Spec

Burn-in & Test Strategies Workshop

RF & High Speed Test

Conclusion

- High-Speed Testing moved from some independent modules to an integrated complex system
- To design a testing fixture which perform as good as expected, we need to evaluate material, stackup, trace, via, interconnection and connectors to get real performance of each segment, then simulate the whole trace to get whole trace performance.
- Fixture verification based on PLTS gives the fixture performance comparing with Specification
- The same methodology can be leveraged to cover higher and higher testing requirement in ATE environment.

100G Testing Fixture Design and Verification