## **BiTS 2017**

Performance Prediction - Electrical simulation



# **Copyright Notice**

The presentation(s)/poster(s) in this publication comprise the Proceedings of the 2017 BiTS Workshop. The content reflects the opinion of the authors and their respective companies. They are reproduced here as they were presented at the 2017 BiTS Workshop. This version of the presentation or poster may differ from the version that was distributed in hardcopy & softcopy form at the 2017 BiTS Workshop. The inclusion of the presentations/posters in this publication does not constitute an endorsement by BiTS Workshop or the workshop's sponsors.

There is NO copyright protection claimed on the presentation/poster content by BiTS Workshop. However, each presentation/poster is the work of the authors and their respective companies: as such, it is strongly encouraged that any use reflect proper acknowledgement to the appropriate source. Any questions regarding the use of any materials presented should be directed to the author(s) or their companies.

The BiTS logo and 'Burn-in & Test Strategies Workshop' are trademarks of BiTS Workshop. All rights reserved.



#### Performance Prediction - Electrical simulation

## **BiTS 2017**

Session 2

Jason Mroczkowski Session Chair

#### **BiTS Workshop 2017 Schedule**

## Performance Day

Monday March 6 - 1:30 pm

### **Performance Prediction**

### "Coaxial Test Socket - Evolution & Optimization"

Frank Zhou - Smiths Connectors

#### "100G Testing Fixture Design and Verification"

Jackie Luo - Shanghai Zenfocus Semi-Tech

#### "Inductance Rise Due To Plating"

Gert Hohenwarter - GateWave Northern, Inc.

#### "Spring probe current-carrying capacity (continuous vs pulse) analysis and improvement"

Yuanjun Shi - TwinSolution Technology Ltd





### **BiTS 2017**

# **100G Testing Fixture Design and Verification**

## Jackie Luo Shanghai Zenfocus Semi-Tech



BiTS Workshop March 5 - 8, 2017



**Burn-in & Test Strategies Workshop** 

www.bitsworkshop.org

March 5-8, 2017

Performance Prediction - Flectrical simulation

## **BiTS 2017**

## Agenda

- 100G High-Speed Interface Introduction
- 100G High-Speed Interface Testing
- 100G Testing Fixture Design
- Testing Verification based on PLTS
   (*Physical Layer Test System*)
- Conclusion



100G Testing Fixture Design and Verification

5

Burn-in & Test Strategies Workshop

Performance Prediction - Electrical simulation

### **100G High-Speed Interface Introduction**

- Core/Data
- Switches
- Routers
- Servers
- Storage
- Standard I/O Interface
  - SFP+
  - QSFP+
  - miniSAS
  - ZQFP+

- ZQSFP+
- XCP
- CFP
- CFP2
- CFP4





100G Testing Fixture Design and Verification

Burn-in & Test Strategies Workshop

Performance Prediction - Electrical simulation

### **100G High-Speed Interface Introduction**

#### **100G Interface Module**



7

Burn-in & Test Strategies Workshop

Performance Prediction - Electrical simulation

## **100G High-Speed Interface Testing**

#### **Host-to-Module Electrical Specifications (host output)**

| Parameter              | Min. | Max.         | Units |            |                                                     |                    |
|------------------------|------|--------------|-------|------------|-----------------------------------------------------|--------------------|
| Differential input     |      | C            | ar    |            |                                                     |                    |
| return loss            | -    | See Equation | ab    | Í          | 95 - 0.37f                                          | $0.01 \le f \le 8$ |
| Common to differential |      |              |       | RLd(f) > d | 515 015 IJ                                          | 0.01 = ) < 0       |
| mode conversion return | _    | See Equation | dB    | RLu() 2    | $4.75 - 7.4 \log_{10} \left( \frac{f}{1.4} \right)$ | 8 ≤ <i>f</i> < 19  |
| loss                   |      |              |       | Į          | 010(14/                                             |                    |

#### **Module-to-Host Electrical Specifications (host input)**

| Parameter                                        | Min. | Max.         | Units |
|--------------------------------------------------|------|--------------|-------|
| Differential input<br>return loss                | _    | See Equation | dB    |
| Differential to common<br>mode input return loss | _    | See Equation | dB    |

$$RLdc(f) \ge \begin{cases} 22 - 20\left(\frac{f}{25.78}\right) & 0.01 \le f < 12.89\\ 15 - 6\left(\frac{f}{25.78}\right) & 12.89 \le f < 19 \end{cases}$$

Burn-in & Test Strategies Workshop

100G Testing Fixture Design and Verification

Burn-in & Test Strategies Workshop

## **BiTS 2017**

Performance Prediction - Electrical simulation

### **100G High-Speed Interface Testing**

• Based on IEEE802.3bm (CAUI-4) Specification



**MCB : Module Compliance Board** 

**Parameters to be Tested:** 

**Test point: B'** Module\_OUTPUT\_SDD11max Module\_OUTPUT\_SDC11max



Test point: C' Module\_INPUT\_SDD11max Module\_INPUT\_SCD11max

Burn-in & Test Strategies Workshop

100G Testing Fixture Design and Verification

Burn-in & Test Strategies Workshop

Performance Prediction - Electrical simulation

# **100G High-Speed Interface Testing**

#### **Module-to-Host Electrical Specifications (module output)**

| Parameter                                                | Min. | Max.         | Units |
|----------------------------------------------------------|------|--------------|-------|
| Differential input<br>return loss                        | Ι    | See Equation | dB    |
| Common to differential<br>mode conversion return<br>loss | _    | See Equation | dB    |

### Host-to-Module Electrical Specifications (module input)

| Parameter              | Min. | Max.         | Units |
|------------------------|------|--------------|-------|
| Differential input     |      | See Equation | dB    |
| return loss            | —    | See Equation |       |
| Differential to common |      | See Equation | dB    |
| mode input return loss | -    | See Equation | E E   |

|                      | 9.5 - 0.37f                                     | $0.01 \leq f < 1$ |
|----------------------|-------------------------------------------------|-------------------|
| $RLd(f) \ge \langle$ | $4.75 - 7.4 \log_{10}\left(\frac{f}{14}\right)$ | 8 ≤ <i>f</i> < 19 |

$$RLdc(f) \ge \begin{cases} 22 - 20\left(\frac{f}{25.78}\right) & 0.01 \le f < 12.89 \\ 15 - 6\left(\frac{f}{25.78}\right) & 12.89 \le f < 19 \end{cases}$$



100G Testing Fixture Design and Verification

8

**Burn-in & Test Strategies Workshop** 

## **BiTS 2017**

Performance Prediction - Electrical simulation

## **100G High-Speed Interface Testing**

Based on IEEE802.3bj Specification





Parameters to be Tested: Insertion loss Return loss Differential to common-mode return loss Differential to common-mode conversion loss Common-mode to commonmode return loss COM ( Channel Operating

100G Testing Fixture Design and Verification

Margin)

**Burn-in & Test Strategies Workshop** 

www.bitsworkshop.org

March 5-8, 2017

### **BiTS 2017**

Performance Prediction - Electrical simulation

## **100G High-Speed Interface Testing**



**Burn-in & Test Strategies Workshop** 

Performance Prediction - Electrical simulation

# **100G High-Speed Interface Testing**

Fixture Mating Testing Based on IEEE802.3bj Specification





Parameters to be Tested: Insertion loss Return loss common-mode to Differential return loss Differential to common-mode conversion loss Common-mode to common-mode return loss Integrated crosstalk noise

100G Testing Fixture Design and Verification

Burn-in & Test Strategies Workshop

### **BiTS 2017**

Performance Prediction - Electrical simulation

### **100G Testing Fixture Design** MCB and HCB Mating Diagram Material, Connector evaluation, Via Modelling and Stackup Design, impedance control, insertion loss, Optimization cross talk, common to Trace differential mode conversion, etc Impedance, Insertion loss, etc. 100G Testing Fixture Design and Verification 14

**Burn-in & Test Strategies Workshop** 

Performance Prediction - Electrical simulation

## **100G Testing Fixture Design**



IL VS. Trace Width/Air Gap



Impedance VS. Trace Width/Air Gap



Material Verification Board, useAFR (Automatic Fixture Removal) or PLTS (Physical Layer Test System) to do calibration, to get real performance of the material after fabrication

100G Testing Fixture Design and Verification

**Burn-in & Test Strategies Workshop** 

Performance Prediction - Electrical simulation

## **100G Testing Fixture Design**

#### copper foil Roughness



Different Processes contribute to different roughness after fabrication







Before Fabrication(VLP) After Traditional Process After low-roughness process



100G Testing Fixture Design and Verification

Burn-in & Test Strategies Workshop

### **BiTS 2017**

Performance Prediction - Electrical simulation

## **100G Testing Fixture Design**

#### Low-Roughness Process

#### Take full advantage of HVLP copper foil



**Burn-in & Test Strategies Workshop** 

Performance Prediction - Electrical simulation

## **100G Testing Fixture Design**

#### Glass Fiber Impact to Differential Signals

Differential signals transmit on High Er and Low Er media will have differential delays



Burn-in & Test Strategies Workshop

## **BiTS 2017**

Performance Prediction - Electrical simulation

## **100G Testing Fixture Design**

#### **Glass Fiber Impact to Differential Signals**

Improvement:

- 1. Design rotated traces;
- 2. Fabricated rotated patterns;





100G Testing Fixture Design and Verification

19

Burn-in & Test Strategies Workshop

## **BiTS 2017**

Performance Prediction - Electrical simulation

# **100G Testing Fixture Design**

Material with issue, phase and delay will be abnormal, and has resonance in IL plot



Material without issue, the phase and delay will be normal, and has no resonance in



**Burn-in & Test Strategies Workshop** 

### **BiTS 2017**

Performance Prediction - Electrical simulation

# **100G Testing Fixture Design**

#### Via Modelling and Optimization



**Burn-in & Test Strategies Workshop** 

www.bitsworkshop.org

21

## **BiTS 2017**

Performance Prediction - Electrical simulation

No stub

18.9

25

30

37.8

44.1 mils

15

Frequency, GHz

20

56.6

10

5

mils

## **100G Testing Fixture Design**

0

-1

-2

-3

-4

-5

-6

-7

-8

-9

-10 └─ 0

S<sub>21</sub>, dB

#### STUB length impact to signal Performance



100G Testing Fixture Design and Verification

22

Burn-in & Test Strategies Workshop

Performance Prediction - Electrical simulation

### **BiTS 2017**

## **100G Testing Fixture Design**



#### **Connector Selection**

- 1. Insertion Loss
- 2. Return Loss
- 3. Differential pair delay
- 4. Xtalk



100G Testing Fixture Design and Verification

**Burn-in & Test Strategies Workshop** 

Performance Prediction - Electrical simulation

## **100G Testing Fixture Design**



Connector Verification board, use AFR of PLTS to do calibration, to get real performance of the material after fabrication

| My fixture inputs are:                                                                                                                                                 |                          |                                                                      |                                                |                       |    |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|----------------------------------------------------------------------|------------------------------------------------|-----------------------|----|
| <ul> <li>Single Ended</li> <li>Differential</li> </ul>                                                                                                                 | -                        |                                                                      |                                                |                       | Þ. |
| My measurement is:<br>01 Port<br>02 Ports<br>OMultiport                                                                                                                |                          | Current Fixture<br>Fixture Match<br>Fixture Length<br>DUT ZO: will b | and DUT As<br>: A ≠ B<br>: A = B<br>e set to S | sumptions<br>ystem ZO |    |
| Advanced settings     After fixture removal set Ca     System ZO"     OMeasured Fixture ZO     So     Ohms     Set "System ZO" to Calibn     Jumat to correct for Fixt | libration                | Reference ZO to<br>erence ZO<br>A ≠ B                                | :                                              |                       |    |
| I want to correct for Fixt<br>My fixture is band limited                                                                                                               | ure Length<br>(use Bandp | A ≠ B<br>A ≠ B<br>ass time domain                                    | mode)                                          |                       |    |



100G Testing Fixture Design and Verification

**Burn-in & Test Strategies Workshop** 

Performance Prediction - Electrical simulation

## **100G Testing Fixture Design**

Get parameters from real evaluation board of material and connectors, then simulate to get the performance of the whole trace



This method works for long distance board also (40inch, Meet IEEE802.3bj Spec)



25

## **BiTS 2017**

Performance Prediction - Electrical simulation

### **Fixture Verification based on PLTS**

#### MCB and HCB Verification







### Testing Setup :

- 1. Keysight PXI Modular network analyzer
- 2. PLTS physical layer testing SW
- 3. Calibration kits, Coaxial Cables, etc.

100G Testing Fixture Design and Verification

Burn-in & Test Strategies Workshop

Performance Prediction - Electrical simulation

### **Fixture Verification based on PLTS**

#### Comparison with IEEE802.3bj Spec



**Burn-in & Test Strategies Workshop** 

Performance Prediction - Electrical simulation

## Conclusion

- High-Speed Testing moved from some independent modules to an integrated complex system
- To design a testing fixture which perform as good as expected, we need to evaluate material, stackup, trace, via, interconnection and connectors to get real performance of each segment, then simulate the whole trace to get whole trace performance.
- Fixture verification based on PLTS gives the fixture performance comparing with Specification
- The same methodology can be leveraged to cover higher and higher testing requirement in ATE environment.

