Driving Performance - Automotive & mm-wave applications

Burn-in & Test Strategies Workshop

www.bitsworkshop.org

March 5-8, 2017

Copyright Notice

The presentation(s)/poster(s) in this publication comprise the Proceedings of the 2017 BiTS Workshop. The content reflects the opinion of the authors and their respective companies. They are reproduced here as they were presented at the 2017 BiTS Workshop. This version of the presentation or poster may differ from the version that was distributed in hardcopy & softcopy form at the 2017 BiTS Workshop. The inclusion of the presentations/posters in this publication does not constitute an endorsement by BiTS Workshop or the workshop's sponsors.

There is NO copyright protection claimed on the presentation/poster content by BiTS Workshop. However, each presentation/poster is the work of the authors and their respective companies: as such, it is strongly encouraged that any use reflect proper acknowledgement to the appropriate source. Any questions regarding the use of any materials presented should be directed to the author(s) or their companies.

The BiTS logo and 'Burn-in & Test Strategies Workshop' are trademarks of BiTS Workshop. All rights reserved.

Bits 2017

Driving Performance - Automotive & mm-wave applications

Session 1 Marc Moessinger Session Chair

BiTS Workshop 2017 Schedule

Performance Day

Monday March 6 - 10:30 am

Driving Performance

"Design for performance and advanced characterization of new contactors"

Markus Wagner - Cohu & Milen Cheshmedjiev - Melexis

"Investigation into Various Via Structures in High Speed Interconnect"

Carol McCuen - R&D Altanova

"Contactor and Package Design Effects on Crosstalk"

Noureen Sajid & Jeff Sherry - Johnstech International

"Contactor Based Final Test at 77 GHz on a Multi-Channel Radar Transceiver Chipset"

Brian Nakai & Jeffrey Finder - NXP Semiconductors

Driving Performance - Automotive & mm-wave applications

Investigation into Various Via Structures in High Speed Interconnect

Carol McCuen

R&D Altanova Semiconductor IC Test

BiTS Workshop March 5 - 8, 2017

Driving Performance - Automotive & mm-wave applications

Overview

- A. Review of the "Need for Speed" -- High Frequency Applications
- B. S-parameters and Eye Diagrams of similar Interconnect,
 - 25 mm long 50 Ω stripline trace
 - 350um pitch via structure at one end
 - Tuned 3 x 3 via structure at other end

in two different Interconnect Processes.

- I. Conventional Fine Pitch PCB Process
- II. Build-Up Technology
 - a. Traditional Staggered (Offset) vias, pads on every layer
 - b. Traditional Aligned vias, pads on every layer
 - c. Damascene, Padless vias, deposition then planarization after every layer
- C. Continued Work

Investigation into Various Via Structures in High Speed Interconnect

5

Driving Performance - Automotive & mm-wave applications

Need for High-Speed Interconnect

- Transmit/Receive Frequencies for 4G (700 MHz to 6 GHz) and 5G (14, 28, 39, 64 GHz) "smart" wireless devices are going into millimeter wave range.
- Parallelism in computing has lead to off-chip signaling interfaces at 56Gbps, also PCI Express 3.0.
- Data centers and Cloud Computing using 100Gbps Ethernet that require 28 and 56 Gbps in copper before going optical.

Investigation into Various Via Structures in High Speed Interconnect

6

Driving Performance - Automotive & mm-wave applications

Various Via Structures in 350 um Pitch (will not show all data in presentation)

Burn-in & Test Strategies Workshop

Driving Performance - Automotive & mm-wave applications

Conventional Fine Pitch Via Structures

- The Purpose is to Determine the Highest frequency of acceptable performance for a 350um Via Structure under several Trace and Via Conditions
 - 1) Vary Depth of the Trace, showing S-parameters of "Edge" Pattern only, leaving the substrate thickness below the trace constant, approximately 3.8mm.
 - Vary length of Signal Via Stub, showing S-parameters of "Edge" Pattern only, up to 2000um long, remaining after Backdrill.
 - 3) Compare Impedance (TDR_Z) for three different Via Patterns.
 - 4) Create Eye Diagrams for a Differential and a Single Ended design.

Investigation into Various Via Structures in High Speed Interconnect

Session 1 Presentation 2

BiTS 2017

Driving Performance - Automotive & mm-wave applications

Sweep Trace Depth and Via Stub Length

Burn-in & Test Strategies Workshop

Driving Performance - Automotive & mm-wave applications

Burn-in & Test Strategies Workshop

Driving Performance - Automotive & mm-wave applications

Optimize the Part of the model that remains constant – Trace and 3 x 3 Vias

Tune <u>Pitch</u> of 3 x 3 Via Pattern at end of 25mm StripLine trace (15um thick) for best Return Loss, when D1 = 240um

▶ Pitch Swept from 600um to 850um

350um pitch Via Pattern, Later will Vary depth and Via stub

N4800-20 Substrate - 3.3 Dk and 0.008 Df Distance between Ground Planes – 223um 50Ω StripLine width – 86um, neck down to 50um between 350um pitch via

Investigation into Various Via Structures in High Speed Interconnect

11

Burn-in & Test Strategies Workshop

Driving Performance - Automotive & mm-wave applications

TDR_Z looking into end of 25 mm long Removed the 350um Via Pattern

Chose pitch of 750um for best 50 Ohm match

Burn-in & Test Strategies Workshop

www.bitsworkshop.org

12

Driving Performance - Automotive & mm-wave applications

Now, onto the 350um Pitch Study-1st Depth of Trace D1 = 240 um

Burn-in & Test Strategies Workshop

Driving Performance - Automotive & mm-wave applications

Burn-in & Test Strategies Workshop

Driving Performance - Automotive & mm-wave applications

1st Trace Depth – D1=240um

"Edge" Manufacturing S1 range: 150um to 350um, 250um nominal Return Loss- at end with 350um structure HFSSDesign 3.3Dk Edge gnd clearance 240 D1 0.00 Name Y x m1 6.0000 -23.8807 12.0000 -22.1521 m2 18.0000 -35.6690 m3 -12.50 18(St(Top_pad_350_T1,Top_pad_350_T1)) 22 00 00 500u 250ur 150um ų, Curve Info --- dB(St(Top_pad_350_T1,Top_pad_350_T1)) Setup1 : Sweep -50.00 Gnd clearance 350='300um' S1='150um' --- dB(St(Top_pad_350_T1,Top_pad_350_T1)) Setup1 : Sweep Gnd_clearance_350='300um' S1='250um' --- dB(St(Top pad 350 T1,Top pad 350 T1) Setup1 : Sweep -62.50 0.00 2.50 7.50 5.00 10.00 12.50 15.00 17.50 20.00 Freq [GHz]

Investigation into Various Via Structures in High Speed Interconnect

15

Burn-in & Test Strategies Workshop

n-in & Test Strategies W

Driving Performance - Automotive & mm-wave applications

Burn-in & Test Strategies Workshop

Driving Performance - Automotive & mm-wave applications

2nd Depth of Trace D1 = 1680 um

Burn-in & Test Strategies Workshop

Driving Performance - Automotive & mm-wave applications

2nd Trace Depth – D1=1680um

Burn-in & Test Strategies Workshop

Driving Performance - Automotive & mm-wave applications

Burn-in & Test Strategies Workshop

Driving Performance - Automotive & mm-wave applications

2nd Trace Depth – D1=1680um

Burn-in & Test Strategies Workshop

Driving Performance - Automotive & mm-wave applications

3rd Depth of Trace D1 = 3600 um

Burn-in & Test Strategies Workshop

Driving Performance - Automotive & mm-wave applications

3rd Trace Depth – D1=3600um

"Edge" Manufacturing S1 range: 150um to 350um, 250um nominal

Burn-in & Test Strategies Workshop

Driving Performance - Automotive & mm-wave applications

3rd Trace Depth – D1=3600um

"Edge" D1 = 3600um, S1 = Manufacturing range of 150um to 350um.

Burn-in & Test Strategies Workshop

Driving Performance - Automotive & mm-wave applications

Burn-in & Test Strategies Workshop

Session 1 Presentation 2

BiTS 2017

Driving Performance - Automotive & mm-wave applications

1st Depth of Differential Trace D1 = 240um

Burn-in & Test Strategies Workshop

Driving Performance - Automotive & mm-wave applications

1st Trace Depth 240um – Differential

"Edge"

D1 = 240um, S1 = Manufacturing range of 150um to 350um.

Increase Frequency Sweep – 50GHz

Investigation into Various Via Structures in High Speed Interconnect

26

Burn-in & Test Strategies Workshop

Driving Performance - Automotive & mm-wave applications

1st Trace Depth 240um – Differential 15 Gbps PRBS7 Eye Diagram

S1 = 250um, nominal

Burn-in & Test Strategies Workshop

Session 1 Presentation 2

BiTS 2017

Driving Performance - Automotive & mm-wave applications

2nd Depth of Differential Trace D1 = 1680um

Burn-in & Test Strategies Workshop

Driving Performance - Automotive & mm-wave applications

2nd Trace Depth 1680um – Differential

"Edge" D1 = 1680um, S1 = Manufacturing range of 150um to 350um.

Burn-in & Test Strategies Workshop

Driving Performance - Automotive & mm-wave applications

2nd Trace Depth 1680um – Differential

"Edge" D1 = 1680um, S1 = Manufacturing range of 150um to 350um. Insertion Loss Diff tuned 3.0Dk Edge D1 1680um 0.00 -0.50 Constraints, m5 -1.00 Name х 6.0000 -0.6689 m4 dB(St(Dirf2,Diff1)) 150um 12.0000 -1.0729 m5 18.0000 -1.5308 m6 1 50 250um Curve Info dB(St(Diff2,...) 16 GHz, "Edge" -2.00 Setup1: Sweep S1='150um' S11 crosses -10dB -- dB(St(Diff2,... 500um Setup1 : Sweep S1='250um' $S21 = -1.6 \, dB$ -2.50 dB(St(Diff2,... Setup1 : Sweep S1='500um' -3.00 2.50 7.50 5.00 10.00 12.50 15.00 17.50 20.00 0 00 Freg [GHz]

Investigation into Various Via Structures in High Speed Interconnect

30

Burn-in & Test Strategies Workshop

n-in & Test Strategies W

Driving Performance - Automotive & mm-wave applications

Collect All Trace Depths for SE Edge @ 6GHz Holding the Via Stub at 250um

Burn-in & Test Strategies Workshop

www.bitsworkshop.org

31

Driving Performance - Automotive & mm-wave applications

Compare TDR_Z SE Via Patterns Trace Depth (240um) and Via Stub S1 = 250um.

Burn-in & Test Strategies Workshop

Driving Performance - Automotive & mm-wave applications

Compare TDR_Z SE Via Patterns Trace Depth (1680um) and Via Stub S1 =250um

Burn-in & Test Strategies Workshop

Driving Performance - Automotive & mm-wave applications

Showing the effects of Trace Depth on TDR_Z

Burn-in & Test Strategies Workshop

Bits 2017

Driving Performance - Automotive & mm-wave applications

Showing the effects of Trace Depth on TDR_Z

Burn-in & Test Strategies Workshop

Driving Performance - Automotive & mm-wave applications

Burn-in & Test Strategies Workshop

Driving Performance - Automotive & mm-wave applications

Burn-in & Test Strategies Workshop

Driving Performance - Automotive & mm-wave applications

Best "Edge" - Increase Sweep to 70 GHz Trace Depth – D1=1680um

"Edge"

D1 = 1680um, S1 = 150um.

Increase Frequency Sweep- 70GHz

Investigation into Various Via Structures in High Speed Interconnect

Burn-in & Test Strategies Workshop

Driving Performance - Automotive & mm-wave applications

Best "Edge", Trace Depth – D1=1680um PRBS7 Eye Diagram at 75Gbps

Burn-in & Test Strategies Workshop

Driving Performance - Automotive & mm-wave applications

Trace Depth or Signal Via Length– Summary

 \succ The smaller the Depth of the Trace, D1, generally improves S11.

However, starting at the 240um depth trace, there is a steady improvement in S11 until 1680um depth.

Burn-in & Test Strategies Workshop

Driving Performance - Automotive & mm-wave applications

Build-Up Technologies

Build-Up Technologies

- 1. Use of Spun Dielectrics (= homogeneous material)
- 2. Stubless Vias
- 3. Padless Vias
- Traditional Staggered (Offset vias) pads on every layer
- Traditional Aligned vias, pads on every layer
- Damascene, Padless vias, deposition then planarization after every layer

Investigation into Various Via Structures in High Speed Interconnect

Driving Performance - Automotive & mm-wave applications

Traditional Build-Up, Two Layers Down, Edge Pattern, Staggered Vias

Burn-in & Test Strategies Workshop

www.bitsworkshop.org

42

Driving Performance - Automotive & mm-wave applications

Traditional Build-Up, Two Layers Down, Edge Pattern, Staggered Vias

Burn-in & Test Strategies Workshop

www.bitsworkshop.org

43

Driving Performance - Automotive & mm-wave applications

Traditional Build-Up, Two Layers Down, Edge Pattern, Staggered Vias

Increase Frequency Sweep– 70GHz

Investigation into Various Via Structures in High Speed Interconnect

Burn-in & Test Strategies Workshop

Driving Performance - Automotive & mm-wave applications

Traditional Build-Up, Two Layers Down, Edge Pattern, Staggered Vias 60 Gbps PRBS7 Eye Diagram

Burn-in & Test Strategies Workshop

Driving Performance - Automotive & mm-wave applications

Damascene Process, 1 Layer Down, Different Vias Diameters, down to 20um

Burn-in & Test Strategies Workshop

Driving Performance - Automotive & mm-wave applications

Damascene Process, 1 Layer Down, Sweep Vias Diameters, 22um to 80um with non-functional pads

Investigation into Various Via Structures in High Speed Interconnect

Driving Performance - Automotive & mm-wave applications

Damascene Process, 1 Layer Down, Signal Via – 20um, Gnd Vias – Diameter 80um

Non-functional pads- With (solid) and without (dashed)

Burn-in & Test Strategies Workshop

Investigation into Various Via Structures in High Speed Interconnect

Burn-in & Test Strategies Workshop

Driving Performance - Automotive & mm-wave applications

Damascene Process, 1 Layer Down, Signal Via – 20um, Gnd Vias – Diameter 80um 90 Gbps PRBS7 Eye Diagram

Burn-in & Test Strategies Workshop

Driving Performance - Automotive & mm-wave applications

Conclusion

Highest Frequency of Use- Based on Return Loss of 10dB

- 36 GHz (75 Gbps Eye Diag.) Conventional Fine Pitch, Edge Pattern, 1680um deep trace, Heterogeneous material
- 28 GHz (60 Gbps Eye Diag.) Traditional Build-Up, Two Layers Down, Edge Pattern, Staggered Vias, Homogeneous material
- 44 GHz (90 Gbps Eye Diag.) Damascene, One Layers Down, Edge Pattern, Optimize Vias and Non-Functional Pads, Homogeneous

Continued Development

- 1. Vertical Transmission Lines
- 2. Vias down to 10um
- 3. +/-1um tolerance for "W"
- Coaxial Shield To reduce Crosstalk
- 4. +/-2um tolerance for "H": We are currently averaging better than +/-0.2um.

Investigation into Various Via Structures in High Speed Interconnect

Driving Performance - Automotive & mm-wave applications

Acknowledgements

- **Phil Warwick**, of R & D Altanova, for developing the study and providing technical and industry expertise.
- Sandeep Sankararaman, of R & D Altanova, for taking my S-parameter files and running the Eye Diagram Analysis in HFSS Electronics Desktop.

Investigation into Various Via Structures in High Speed Interconnect

51

Burn-in & Test Strategies Workshop