BiTS 2016

Proceedings Archive

Burn-in & Test Strategies Workshop

www.bitsworkshop.org

March 6-9, 2016

Presentation / Copyright Notice

The presentations in this publication comprise the pre-workshop Proceedings of the 2016 BiTS Workshop. They reflect the authors' opinions and are reproduced here as they are planned to be presented at the 2016 BiTS Workshop. Updates from this version of the papers may occur in the version that is actually presented at the BiTS Workshop. The inclusion of the papers in this publication does not constitute an endorsement by the BiTS Workshop or the sponsors.

There is NO copyright protection claimed by this publication. However, each presentation is the work of the authors and their respective companies: as such, it is strongly encouraged that any use reflect proper acknowledgement to the appropriate source. Any questions regarding the use of any materials presented should be directed to the author/s or their companies.

The BiTS logo and 'Burn-in & Test Strategies Workshop' are trademarks of BiTS Workshop.

2

Bits 2016

Proceedings Archive

Cell-ebrating Test - Test Cell - 1 of 2

BiTS 2016

Testing Magnetic Sensors

Larre Nelson Kita USA Paul Ruo Aries Electronics

2016 BiTS Workshop March 6-9, 2016

Burn-in & Test Strategies Workshop

www.bitsworkshop.org

March 6-9, 2016

Contents

- Magnetism 101
- Magnetic sensors through the ages
- MEMS magnetometer
- Test socket materials
- Contact materials
- Manual test sockets for magnetic sensors
- Automated system for testing magnetic sensors

Testing Magnetic Sensors

Cell-ebrating Test - Test Cell - 1 of 2

Burn-in & Test Strategies Workshop

Bits 2016

Magnetism 101

What causes Moving or spinning electrons magnetism? Unbalanced spins of electrons

Ferro-

Strongest type of magnetism

4 elements (Fe, Ni, Co, Gd) Some naturally-occurring minerals (Fe_3O_4)

Some man-made compounds of rare-earth minerals

Domains Ferromagnetic materials spontaneously self-align into small uniformly magnetic regions. But the magnetic orientation of each region is random. Under the influence of an external magnetic field, the domains become uniformly oriented and give the material a strong magnetic signature.

Domains Before Magnetization

Domains After Magnetization

4

Testing Magnetic Sensors

BiTS 2016

Cell-ebrating Test - Test Cell - 1 of 2

Magnetism 101					
Magnetic Fields					
Field strength (H Flux density (B)) ørsted gauss tesla				
Examples:	MRI instrument Rare earth magnet Refrigerator magnet Earth's magnetic field	70,000 10,000 50 0.5	gauss gauss gauss 5 gauss		
8175 8	Testing Magnetic Sensors				5

Burn-in & Test Strategies Workshop

Cell-ebrating Test - Test Cell - 1 of 2

BiTS 2016

Burn-in & Test Strategies Workshop

1

BiTS 2016

Cell-ebrating Test - Test Cell - 1 of 2

	Mag	netism 101		
Permeability (µ)	Ability to create a	and maintain a magnetic field	d	
	Relative permeal	pility (μ/μ_0) – compared to a	vacuum	
	μ/μ_0 Examples:	Air, Teflon, Cu, Al, Au, Pd	1	
		Austenitic stainless steel	1	
		Tungsten	7	
		Martensitic stainless steel	50 - 900	
		Tool steel	100	
		Nickel	600	
		Ferritic stainless steel	1,000 – 1,800	
		Iron	5,000	
BITS 900		Testing Magnetic Sensors		7

Burn-in & Test Strategies Workshop

BiTS 2016

Cell-ebrating Test - Test Cell - 1 of 2

Magnetism	101
------------------	-----

Soft Magnets

ts The domains can quickly align, and quickly go back to an unaligned orientation in response to an external magnetic field.

Used in: Transformers

Recording heads

Magnetic shielding

Magnetometers

Testing Magnetic Sensors

Burn-in & Test Strategies Workshop

Cell-ebrating Test - Test Cell - 1 of 2

Bits 2016

Magnetism 101

Soft Magnets

The domains can quickly align, and quickly go back to an unaligned orientation in response to an external magnetic field.

Used in: Transformers

Recording heads Magnetic shielding Magnetometers

Just Like Robin Williams

Testing Magnetic Sensors

Burn-in & Test Strategies Workshop

BiTS 2016

Cell-ebrating Test - Test Cell - 1 of 2

Magnetic Sensors through the Ages

1000s Loadstones (Fe₃O₄) used as a compass
1800s First use of magnetometers for iron ore exploration
1900s Hall-effect sensors used in computer keyboards
2000s Cell phones and wearables

Magnetometer from 1890

Hall Effect Sensor

Wearables

Testing Magnetic Sensors

Burn-in & Test Strategies Workshop

BiTS 2016

MEMS magnetometer

MEMS devices

Small and low costVery sensitive (0.1 gauss)2 billion will be shipped in 2016

Kionix KMX62 3mm x 3mm, 16 pads, 0.5mm pitch Combined magnetometer & accelerometer

A high frequency pulse is sent down a soft magnet core (Fe & Co alloy), inducing a voltage in surrounding sense coils. The measured voltage in the coils is conditioned by the presence of a nearby magnetic field.

Testing Magnetic Sensors

Test	Soc	ket	Mater	ials

Non-magnetic

Magnetic

Plungers	Steel	BeCu, Palladium alloys
Barrels	Nickel	Copper alloys (Brass, Bronze)
Springs	Music Wire (steel alloy)	BeCu
	Tungsten	Bronze
	Stainless Steel	Stainless Steel
Stampings	Stainless Steel	BeCu
Plating	Nickel	Nickel
		Gold, Pd, and PdCo
Elastomers	Using Ni or Fe particles	Using Ag particles
Socket bodies	Stainless Steel	Stainless Steel
	Music Wire (steel alloy)	Aluminum, Plastics, Air

Testing Magnetic Sensors

BiTS 2016

Cell-ebrating Test - Test Cell - 1 of 2

Nickel and Stainless Steel			
N	lagnetic	Non-magnetic	
Nickel	Pure nickel	Most nickel alloys	
	Electroless Ni plating (low P)	Electroless Ni plating (high P)	
	Electrolytic Ni plating		
Stainless	Work-hardened Austenitic	Austenitic - not work-hardened	
Steel	Martensitic (400 series)	Special blends (NAS 604PH)	
	Ferritic		
Bins Bins Burn-in & Test Strategies Workshop	Testing Ma	gnetic Sensors	13

Burn-in & Test Strategies Workshop

BiTS 2016

Cell-ebrating Test - Test Cell - 1 of 2

Nickel and Magnetism

Are nickels (and other coins) magnetic ?

Testing Magnetic Sensors

14

Burn-in & Test Strategies Workshop

www.bitsworkshop.org

March 6-9, 2016

BiTS 2016

Cell-ebrating Test - Test Cell - 1 of 2

Nickel and Stainless Steel			
N	lagnetic	Non-magnetic	
Nickel	Pure nickel	Most nickel alloys	
	Electroless Ni plating (low P)	Electroless Ni plating (high P)	
	Electrolytic Ni plating		
Stainless	Work-hardened Austenitic	Austenitic - not work-hardened	
Steel	Martensitic (400 series)	Special blends (NAS 604PH)	
	Ferritic		
Binn-in & Test Strategies Workshop	C Testing Ma	gnetic Sensors	15

Burn-in & Test Strategies Workshop

Stainless Steel and Magnetism

The magnetic permeability of austenitic stainless steels increases when cold worked. (Measured at 200 ørsted.)

The cold working scale on the horizontal axis can also be expressed in units of ultimate tensile strength.

Examples of cold working:

Fabrication to get a high tensile strength Fabrication of a compression spring Stamping and bending

Burn-in & Test Strategies Workshop

Contact Materials (Spring Pins)

Plungers	BeCu Palladium Alloys	Non-Magnetic 非磁性 Pitch 0.50 mm	
Barrels	Copper alloys 18K Au alloy	0010 0010 0000 000000	
Springs	BeCu NAS 604PH	TSPECFICATIONS (dependent intel 1/2006) SPECFICATIONS (dependent intel 1/2006) Sector 1/2006) Sector 1/2006 Sector 1/2006	
Plating	No nickel Au (hardened with Co) Palladium	<u> </u>	
Permeability	Target $(\mu/\mu_0) = 1.0$		
Pin& Test Strategies Workshop	Testing Magneti	c Sensors	17

Burn-in & Test Strategies Workshop

Bur

Bits 2016

Cell-ebrating Test - Test Cell - 1 of 2

Relative permeability and pin-related flux density of a non-magnetic spring pin in response to an external magnetic field:

External Field: Flux density of pin: Relative permeability of pin: 0 – 10,000 ørsted +0.015 to -0.050 gauss 1.000018 Max (at 510 ørsted)

Magnetic Characteristic

Burn-in & Test Strategies Workshop

Burn-in & Test Strategies Workshop

BiTS 2016

Cell-ebrating Test - Test Cell - 1 of 2

Contact Materials (Elastomers)

Some elastomers are constructed with non-magnetic materials. Elastomers use silicone or silicone/polyimide based materials as their primary media. The contacts are made from non-magnetic silver (Ag).

Burn-in & Test Strategies Workshop

www.bitsworkshop.org

19

BiTS 2016

Cell-ebrating Test - Test Cell - 1 of 2

Burn-in & Test Strategies Workshop

Cell-ebrating Test - Test Cell - 1 of 2

BiTS 2016

Manual Test Sockets

Non-Magnetic socket with silicone elastomer and Kapton hardware

Non-magnetic socket with spring probes and standard hardware

Testing Magnetic Sensors

Burn-in & Test Strategies Workshop

BiTS 2016

Cell-ebrating Test - Test Cell - 1 of 2

Automated Test System

Tester and handler for magnetometer and accelerometer

Testing Magnetic Sensors

Burn-in & Test Strategies Workshop

www.bitsworkshop.org

March 6-9, 2016

Cell-ebrating Test - Test Cell - 1 of 2

BiTS 2016

Multi-cavity socket

Multi-cavity Handler-friendly Capable of clamping in device when subjected to G forces Relative permeability = 1.0 Magnetic coils included to introduce known magnetic fields

Testing Magnetic Sensors

Burn-in & Test Strategies Workshop

Testing magnetic sensors is a growth opportunity for test professionals and test equipment companies.

Testing any kind of sensor will challenge you to learn something new.

Magnetic sensors can be tested with conventional methods if you use the right materials.

BITS 2017: testing other kinds of sensors ?

Testing Magnetic Sensors

Burn-in & Test Strategies Workshop

BiTS 2016

Cell-ebrating Test - Test Cell - 1 of 2

Burn-in & Test Strategies Workshop