Proceedings Archive

Burn-in & Test Strategies Workshop

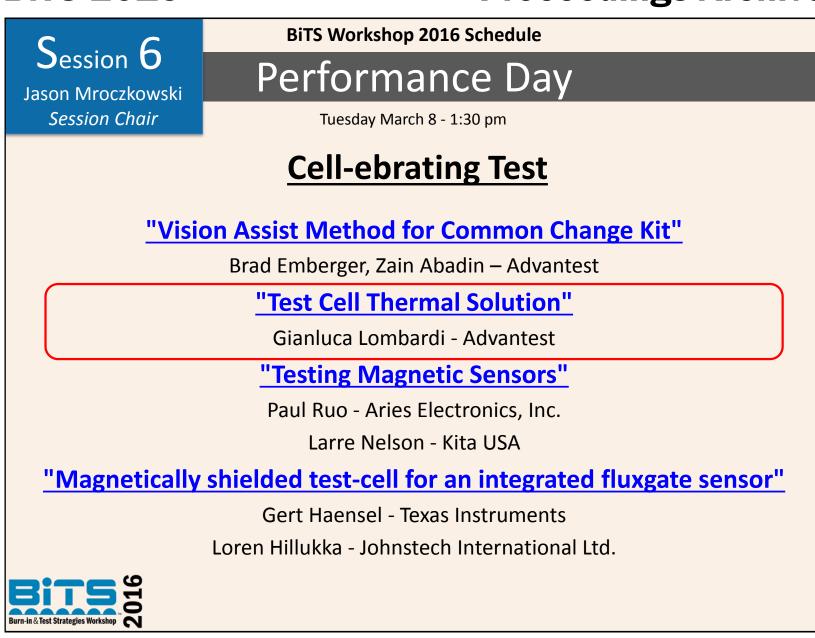
www.bitsworkshop.org

March 6-9, 2016

Presentation / Copyright Notice

The presentations in this publication comprise the pre-workshop Proceedings of the 2016 BiTS Workshop. They reflect the authors' opinions and are reproduced here as they are planned to be presented at the 2016 BiTS Workshop. Updates from this version of the papers may occur in the version that is actually presented at the BiTS Workshop. The inclusion of the papers in this publication does not constitute an endorsement by the BiTS Workshop or the sponsors.

There is NO copyright protection claimed by this publication. However, each presentation is the work of the authors and their respective companies: as such, it is strongly encouraged that any use reflect proper acknowledgement to the appropriate source. Any questions regarding the use of any materials presented should be directed to the author/s or their companies.


The BiTS logo and 'Burn-in & Test Strategies Workshop' are trademarks of BiTS Workshop.

2

Bits 2016

Proceedings Archive

Burn-in & Test Strategies Workshop

Cell-ebrating Test - Test Cell - 1 of 2

BiTS 2016

Test Cell Thermal Solution

Gianluca Lombardi Advantest

2016 BiTS Workshop March 6 - 9, 2016

Burn-in & Test Strategies Workshop

www.bitsworkshop.org

March 6-9, 2016

Cell-ebrating Test - Test Cell - 1 of 2

Overview

- First things first: acronyms!
- Why temperature control?
- Challenges
- Test Cell approach

Test Cell Thermal Solution

Burn-in & Test Strategies Workshop

Cell-ebrating Test - Test Cell - 1 of 2

Acronyms!

M4871	Advantest SoC P&P Handler	
93K	Advantest SoC tester	
ATC	Active Thermal Control	
DFT	Design For Testability	
DUT	Device Under Test	
θ _{JC}	Thermal resistance junction/case	
TJ	Junction Temperature	
T _C	Case Temperature	
T _P	Pusher temperature	
T _{HS}	Heat Sink Temperature	

Test Cell Thermal Solution

Burn-in & Test Strategies Workshop

Cell-ebrating Test - Test Cell - 1 of 2

Why Thermal Control?

- Increasingly temp-sensitive tests
 - VMIN
 - FMAX/speed binning
 - PMIC trimming
 - IDDQ
- Deviations from desired temperature set point lead to incorrect measurements, wrong binning, resulting in either yield loss or RMAs

Test Cell Thermal Solution

Burn-in & Test Strategies Workshop

Cell-ebrating Test - Test Cell - 1 of 2

Passive/Active Thermal Control

Passive

 The control system maintains the same heat sink temperature at all times

Active

 The control system changes the heat sink temperature in response to temperature variations, to more quickly supply/sink heat to/from the DUT and restore the desired temperature

Test Cell Thermal Solution

Burn-in & Test Strategies Workshop

Cell-ebrating Test - Test Cell - 1 of 2

Why Active Thermal Control?

- Performance
 - Faster response to temperature variations, everything else being equal
- Correlation
 - Empirical temperature control solutions tend to lead to inconsistent yields from production site to production site

Test Cell Thermal Solution

Burn-in & Test Strategies Workshop

BiTS 2016

Cell-ebrating Test - Test Cell - 1 of 2

Thermal Stack

Temperature control quality is the result of all the following contributors

- ATC heat sink
- Package
- Socket
- Handler change kit
- Loadboard

Test Cell Thermal Solution

Burn-in & Test Strategies Workshop

Cell-ebrating Test - Test Cell - 1 of 2

Continuity vs Thermal Contact

Factors limiting temperature control quality w/Continuity already established

- High thermal resistance between ATC heat sink and package
 - Limited or missing gimbaling
- Package --more on this in the next slide

Test Cell Thermal Solution

Burn-in & Test Strategies Workshop

Cell-ebrating Test - Test Cell - 1 of 2

Package Challenges

- Junction/case thermal resistance, θ_{JC}
- Top side roughness/markings
 - Roughness = air gaps= higher θ_{JC}
- Planarity
 - Thin packages warping/flattening over T_J
- Contamination

Test Cell Thermal Solution

Burn-in & Test Strategies Workshop

Cell-ebrating Test - Test Cell - 1 of 2

DUT Challenges

- Temperature feedback availability
 - Thermal diode: always
 - Temp sensors: generally after initialization and ATPG
 - Need additional DFT/resources

Test Cell Thermal Solution

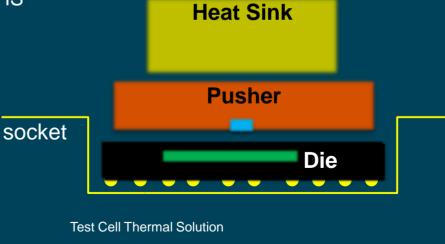
Burn-in & Test Strategies Workshop

Cell-ebrating Test - Test Cell - 1 of 2

Test Cell Challenges

- Socket/loadboard/DUT/tester can quickly get damaged by thermal runaways
 - Must detect early signs of failure, wherever it may come from
 - Even more so with high power applications, 100W and above

Test Cell Thermal Solution


11

Burn-in & Test Strategies Workshop

Bits 2016

Where to Sense DUT Temperature

- DUT thermal diode (T₁) - One in the whole chip, always available DUT embedded temp sensors - Multiple available generally after init/ATPG - Temperature gradients can be quantified • Heat Sink, T_{HS} **Heat Sink** Pusher, T_{P} ullet
 - Case, T_C

Burn-in & Test Strategies Workshop

rn-in & Test Strategies W

www.bitsworkshop.org

12

Cell-ebrating Test - Test Cell - 1 of 2

ATC Challenges (I)

- ATC response time within milliseconds range
 Limited by heat transfer time constants through stack
- Very fast DUT T_J rise transients may come and go before the they get detected and corrected by best-in-class ATC

- Slow heat propagation through thermal stack

• ATC can only do so much, if the thermal stack is highly thermally resistive

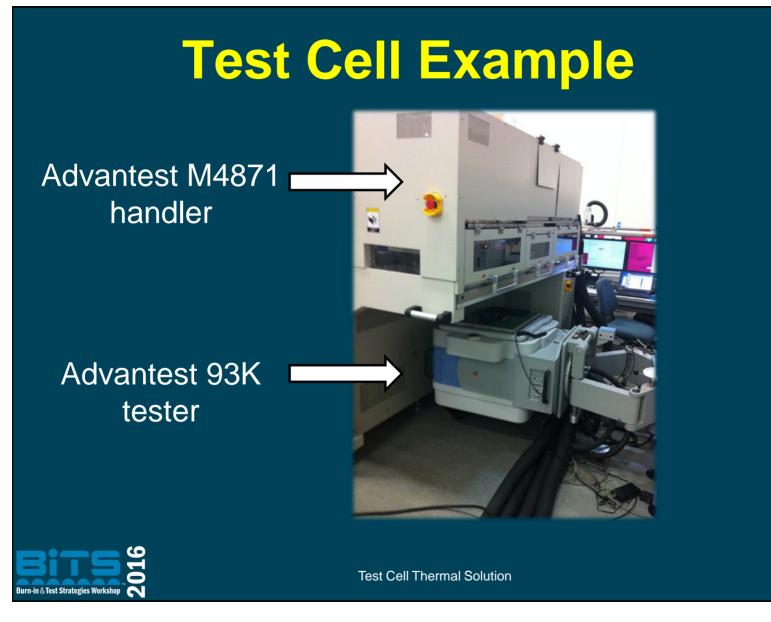
– Slow to detect, slow to respond to $\Delta T/\Delta t$

Test Cell Thermal Solution

Cell-ebrating Test - Test Cell - 1 of 2

ATC Challenges (II)

- T_{HS} is M4871 default T measurement source
- T_{HS} may NOT follow T_J very closely
 - with just 10W power being dissipated, $T_{\rm J}$ can raise by 10-12C, while $T_{\rm HS}$ hardly moves by 1-2C,



Test Cell Thermal Solution

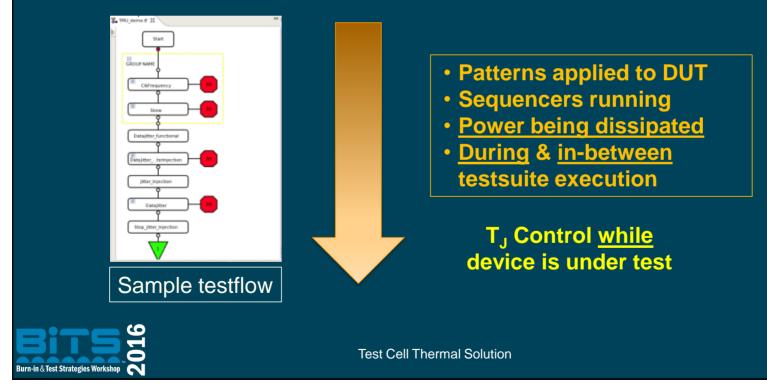
Burn-in & Test Strategies Workshop

BiTS 2016

Cell-ebrating Test - Test Cell - 1 of 2

Burn-in & Test Strategies Workshop

www.bitsworkshop.org


15

Cell-ebrating Test - Test Cell - 1 of 2

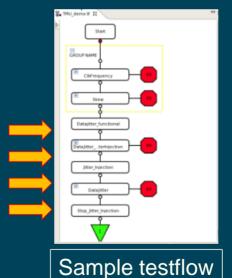
Real-Time Junction Control (T_J)

ATC CONTINUOSLY...

- Measures junction temperature T_J and detects over/under shoots
- Reacts to ΔT_J driven by <u>ALL DUT power domains</u>

Burn-in & Test Strategies Workshop

www.bitsworkshop.org


16

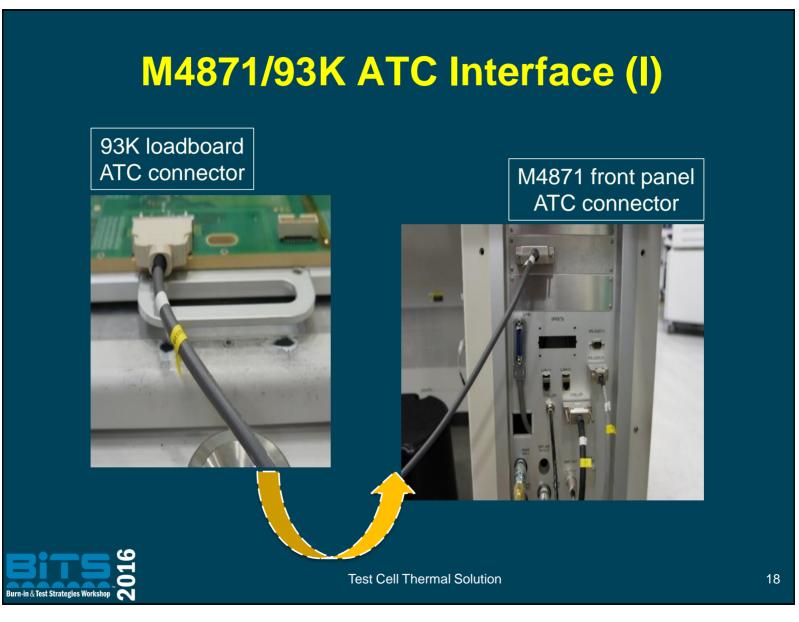
Cell-ebrating Test - Test Cell - 1 of 2

Supported T_J Feedback Types

93K test program controls temperature feedback signal used by M4871

- T_J ANA (diff/SE)
- PWM
- I2C

Feedback mode can be changed testsuite by testsuite



Test Cell Thermal Solution

Burn-in & Test Strategies Workshop

BiTS 2016

Cell-ebrating Test - Test Cell - 1 of 2

Burn-in & Test Strategies Workshop

Cell-ebrating Test - Test Cell - 1 of 2

BiTS 2016

M4871/93K ATC Interface (II)

Signal	Direction
ANA_TEMP+	Driven by DUT
ANA_TEMP-	Driven by DUT
I2C_DTA	Driven by DUT
I2C_CLK	Driven by DUT
PWM	Driven by DUT

Test Cell Thermal Solution

Burn-in & Test Strategies Workshop

Cell-ebrating Test - Test Cell - 1 of 2

BiTS 2016

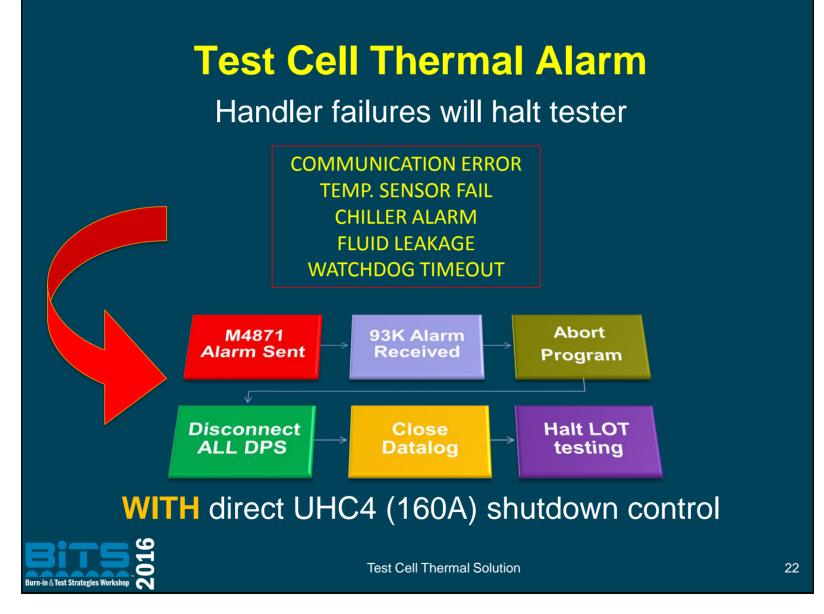
M4871/93K ATC Interface (III)

Signal	Direction
PROFILE_PRETRIGGER	Driven by 93K
T-CASE_B	Driven by 93K
T-PWM_B	Driven by 93K
M4871_OK_B	Driven by M4871
UHC4_SAFETY_LINE_B	Driven by M4871
CABLE_OK_B	Monitored by 93K

Test Cell Thermal Solution

Burn-in & Test Strategies Workshop

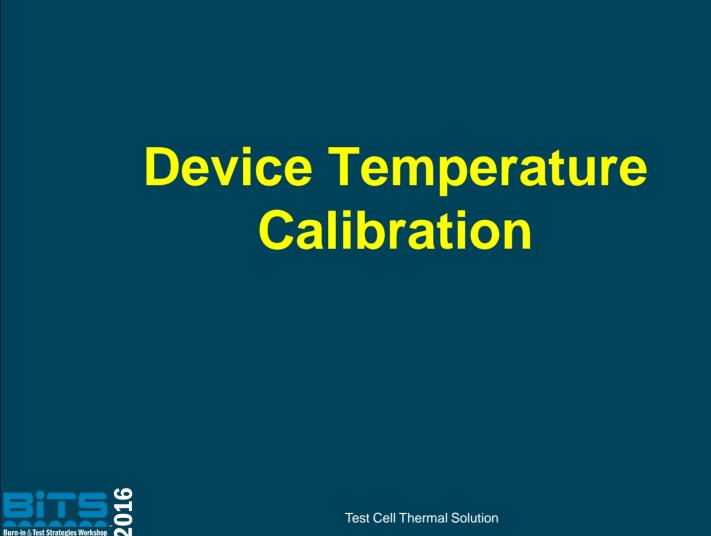
Bits 2016



Test Cell Thermal Solution

Burn-in & Test Strategies Workshop

Cell-ebrating Test - Test Cell - 1 of 2


BiTS 2016

Burn-in & Test Strategies Workshop

Cell-ebrating Test - Test Cell - 1 of 2

Bits 2016

Burn-in & Test Strategies Workshop

Cell-ebrating Test - Test Cell - 1 of 2

DUT T/V Calibration (I)

Concept

- Accurate T_J measurement required only during calibration
 - Provided by temperature monitor IC or DUT, once per insertion
- When DUT is at set point (e.g. $T_J = 85C$), thermal diode voltage $\overline{V_{BE}}$ is measured and ATC calibrated

 $\overline{V_{BE}}$: thermal diode voltage measured when DUT @ set point

Test Cell Thermal Solution

Burn-in & Test Strategies Workshop

Cell-ebrating Test - Test Cell - 1 of 2

DUT T/V Calibration (II)

Concept (cont.)

- After calibration, $V_{BE}(t)$ is monitored by M4871
 - Biasing current supplied by loadboard circuitry or tester channel
- $V_{BE}(t)$ is now the ATC feedback signal, not $T_J(t)$

ATC will minimize $\Delta V_{BE} = \{V_{BE}(t) - \overline{V_{BE}}\}$

Test Cell Thermal Solution

Burn-in & Test Strategies Workshop

Cell-ebrating Test - Test Cell - 1 of 2

DUT T/V Calibration (III)

Advantages

- Measuring is faster than calculating $T_J(t)$
- NO add'l voltage/temp conversion required after T/V calibration
- Immune to silicon process and ESR
 - Relies on accurate thermal diode ideality factor

Test Cell Thermal Solution

26

Burn-in & Test Strategies Workshop

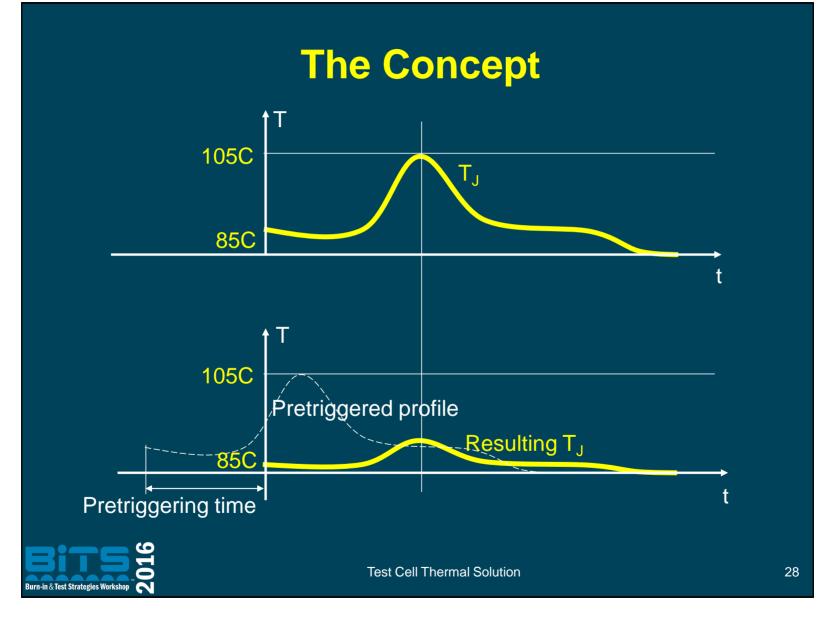
Cell-ebrating Test - Test Cell - 1 of 2

BiTS 2016

Profiling & Pre-Triggering

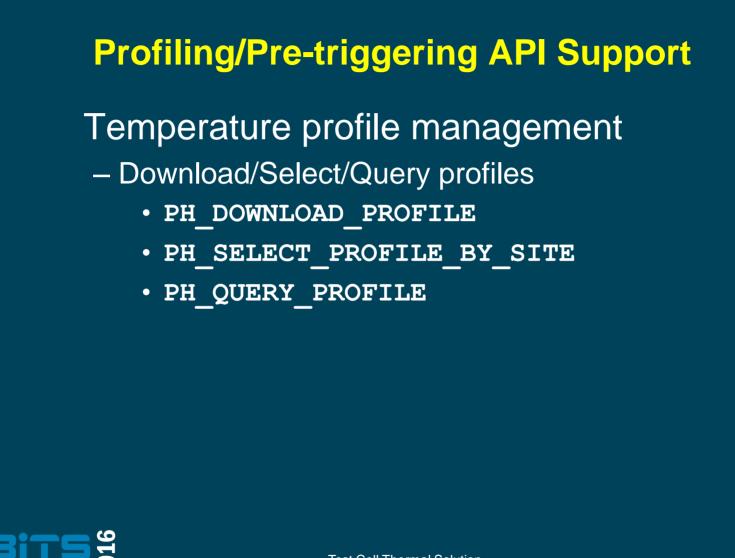
Test Cell Thermal Solution

27


Burn-in & Test Strategies Workshop

www.bitsworkshop.org

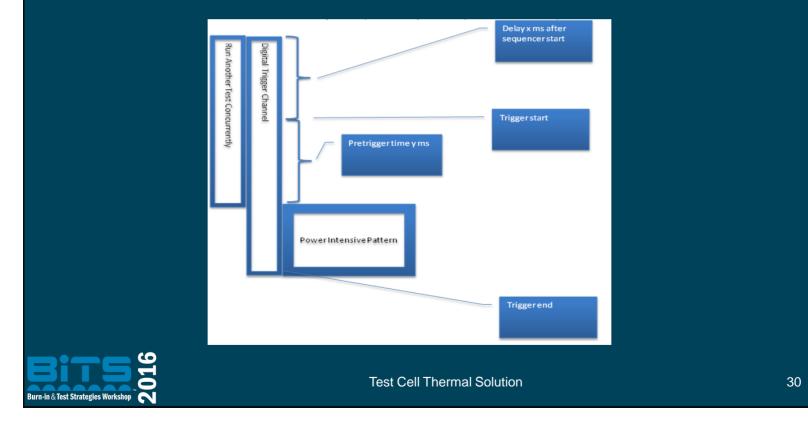
March 6-9, 2016


Cell-ebrating Test - Test Cell - 1 of 2

BiTS 2016

Burn-in & Test Strategies Workshop

Cell-ebrating Test - Test Cell - 1 of 2


urn-in & Test Strategies Works

Test Cell Thermal Solution

Cell-ebrating Test - Test Cell - 1 of 2

Profiling/Pre-triggering TML Support

Zero-overhead \rightarrow hides pre-triggering time behind low power pattern

Burn-in & Test Strategies Workshop