Proceedings Archive

Presentation / Copyright Notice

The presentations in this publication comprise the pre-workshop Proceedings of the 2016 BiTS Workshop. They reflect the authors' opinions and are reproduced here as they are planned to be presented at the 2016 BiTS Workshop. Updates from this version of the papers may occur in the version that is actually presented at the BiTS Workshop. The inclusion of the papers in this publication does not constitute an endorsement by the BiTS Workshop or the sponsors.

There is NO copyright protection claimed by this publication. However, each presentation is the work of the authors and their respective companies: as such, it is strongly encouraged that any use reflect proper acknowledgement to the appropriate source. Any questions regarding the use of any materials presented should be directed to the author/s or their companies.

The BiTS logo and 'Burn-in & Test Strategies Workshop' are trademarks of BiTS Workshop.

BiTS 2016

Proceedings Archive

Session 5

Ashok Kabadi Session Chair **BiTS Workshop 2016 Schedule**

Performance Day

Tuesday March 8 - 10:30 am

West Meets East & Cutting Edge

"LPDDR4 Signal & Power Performance Optimization By Hardware"
"通过测试硬件的优化来提升LPDDR4信号和电源的性能"

Yuanjun Shi - Twinsolution Technology Xiao Yao - HiSilicon Technologies Co

"Reliability Characterization of Unpackaged (bare) die for Silicon Photonics module"

Sujata Paul, Andrew Fong, Samir Alqadhy, Huy Nguyen, Zoe Conroy - Cisco Tom Elliot, Jag Jassal - Evans Analytical Group

"Advanced High Energy CO2 Spray Cleaning Technology for Burn-In Test Substrate Cleaning Applications"

Nelson Sorbo - Cool Clean Technologies

"Texas Instruments Final Test Contactor Qualification Process and Low Profile Contactor Solution"

James Tong, Hisashi Ata - Texas Instruments

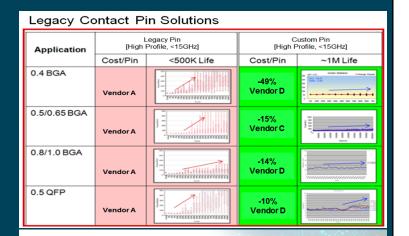
Texas Instruments Final Test Contactor Qualification Process and Low Profile Contactor Solution

James Tong, Hisashi Ata Texas Instruments

2016 BiTS Workshop March 6 - 9, 2016

Contents

- What's the Problem?
- Problem Statement
- Technical Solution and Challenges
- Learning the Pin Type
- Learning the Pin Design
- Learning the BGA contactor design
- Learning the QFP contactor design


- TI contactor qualification process
 - Step1: Vendor's factory evaluation
 - Step2: TI technical qualification
 - Step3: TI production qualification
 - Step4: Qualification data review and deployment
- Summary
- Acknowledgements

Problem Statement

- Legacy contact technologies cannot support today's test application requirements.
- Different approach to deal with the short fall from every A/T sites
 - Incompatibility performance
 - Localized support to each A/T site
 - yield correlation problem
 - Multi-factories loading limitation.
- Resulting in customized pin design by device by user.
- Work against cost reduction model to benefit TI worldwide

Strategy

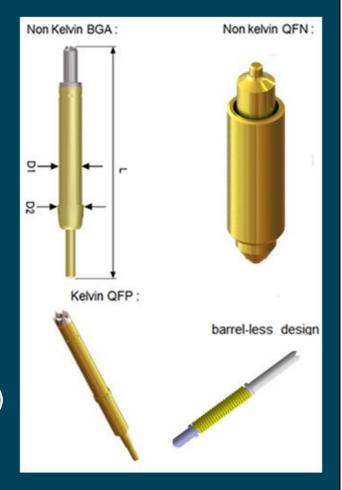
2014 Execute and gain share

- √ High Performance pins
 - Low Cres
 - High CCC (Current Carrying Capability)
 - High bandwidth
- √ Common use across tester platforms, pin pitches and

A/Ts

- → Volume pricing
- → Sameness across A/Ts
- √ Low COO (Low Cost, Long Life > 1,000K insertions)
- ✓ PCB footprint compatibility
- √ WW TI support

Texas Instruments Final test Contactor qualification process and low profile contactor solution


Technical Solution and Challenges

Solution

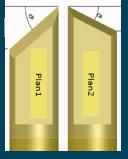
- Shorter pin resulting in less metal between the load-board and the Device-Under-Test (DUT)
- Lower pin inductance
- Better signal integrity


Challenges

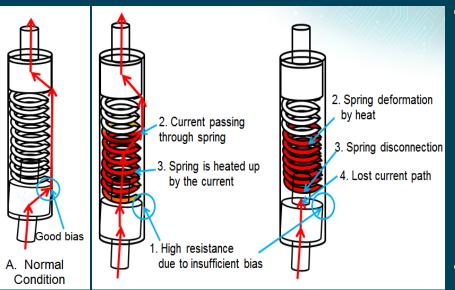
- High current carrying capability (CCC)
- Reliable contact resistance (Cres)
- Pin manufacturability: Low cost



Texas Instruments Final test Contactor qualification process and low profile contactor solution



Learning the Pin Type


- Unlimited tip shape and design.
- Tip material: Homogenous, plated core material, etc.
- Barrel: diameter and plating thickness
- Spring design and material: Total force, life, contact reliability and temperature rating
- Biasing mechanism
 - CRes, CCC, spring performance and lifetime
 - Bottom Plunger design
 - Material
 - Unlimited Shape
 - Plating recipe
 - PCB pad damage

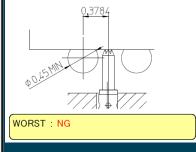
Learning the Pin Design

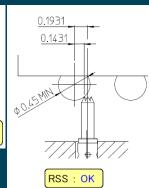
- Top plunger design → contact reliability & DUT contact surface damage
- Shape and volume of material → Wear rate / life
- Material composition → contact reliability and life

- Bottom plunger design → reliability of the pin internal structure
 - Shape
 - Plating thickness / material
 - Spring force / material
 - Biasing method
- Define the CCC performance

Learning the BGA Contactor Design

WORST: 0.3729
RSS: 0.2326

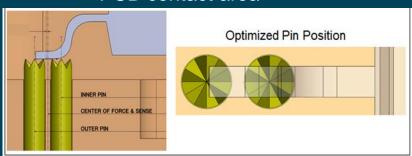

Condition 1

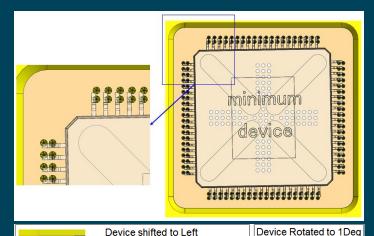

TFND Guide: 27.152mm MAX
Device Guide: 24.127mm MAX
NEST (Out side): 27.07mm MIN
NEST (In side): 24.15mm MAX

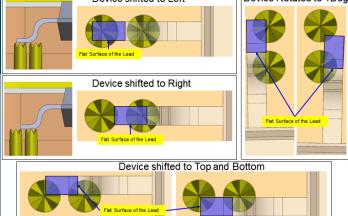
- Nest guide > coarse alignment
- BGA Package guide provides the final alignment
- Positional simulation –
 RSS

Condition 2

: 0.01*√2 1. Alignment hole of Guide true position : 0.02 2. Alignment hole of Guide VS Dowel pin : 0.01*√2 3. Dowel pin for Plate true position : 0.01*√2 4. Alignment hole of Plate true position : 0.0125 5.Alignment hole of Plate VS Dowel pin : 0.01*√2 6.Dowel pin for Pin Block true position : 0.01*√2 7.Probe hole true position : 0.0175 8. Probe tip accuracy : 0.2272 9.PKG shift length

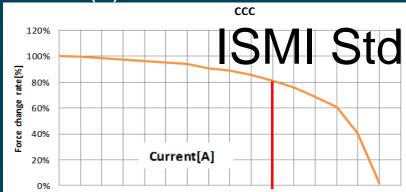


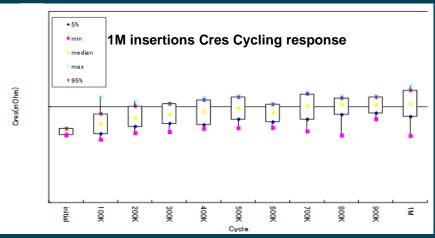




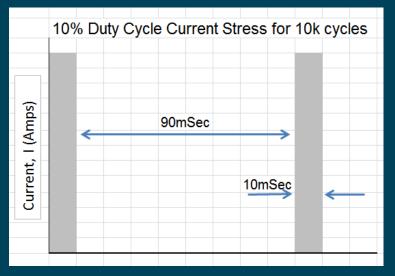
Learning the QFP Contactor Design

- Dual pin strategy
 - Common use for Kelvin and non-Kelvin application
 - Kelvin Force/Sense
 - Non-Kelvin Mechanical and Electrical redundancy
- Pin gap: Smaller the better
- Contact position: Optimized
 - Flat area of the lead contact
 - PCB contact area





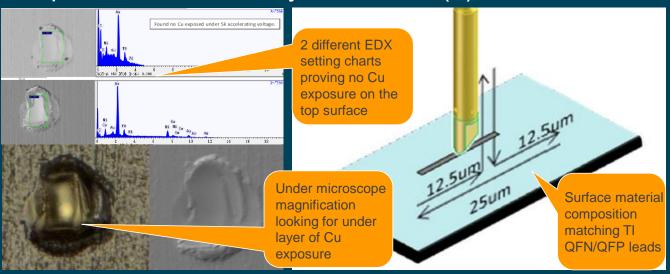
Step 1. Vendor's factory evaluation (1)



- Vendor's Pin reliability performance
 - FReD chart
 - Current capability based on ISMI test method
 - Contact resistance stability

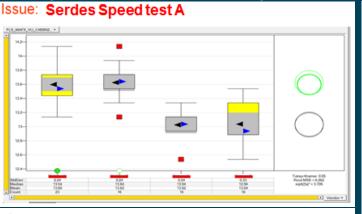
Step 1. Vendor's factory evaluation (2)

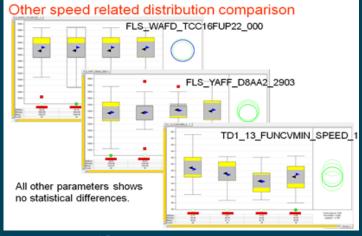
- Electrical Stress Test
 - Stress pin thru high current
 - ➤ Pass → Force drop less than 20% and no discoloration / burned tips
- Emulate device test application

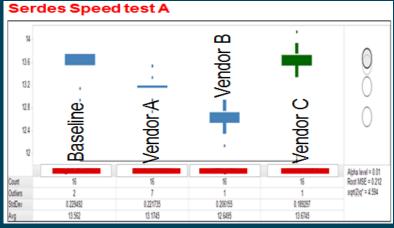

Current (A)	# of pulses	On time (ms)	Off time (ms)	Duty Cycle	Temp(C)	pin force (gf)	Result
7	1	10	90	10%	32.5	24.7	OK
7	1	10	90	10%	31	25.3	OK
7	100	10	90	10%	30.6	24.8	OK
7	1,000	10	90	10%	40.9	23.3	OK
7	2,000	10	90	10%	41	21.7	OK
7	5,000	10	90	10%	39.7	22.9	OK
7	10.000	10	90	10%	42	23.7	ок

Texas Instruments Final test Contactor qualification process and low profile contactor solution

Step 1. Vendor's factory evaluation (3)



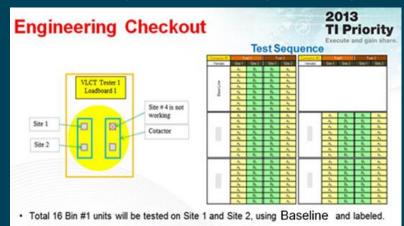

- Mechanical contact wear simulation
 - Effect of tip shape
 - pin wear rate
 - Cu exposure / damage on DUT pads/leads



Texas Instruments Final test Contactor qualification process and low profile contactor solution

Step 2. TI technical qualification

- Serdes loop back test is a good test method to validate solution w.r.t. it's speed characteristic (High Speed Digital)
- Adopted this form of test method to ensure that qualified solution will be able to deliver the promised performance


Texas Instruments Final test Contactor qualification process and low profile contactor solution

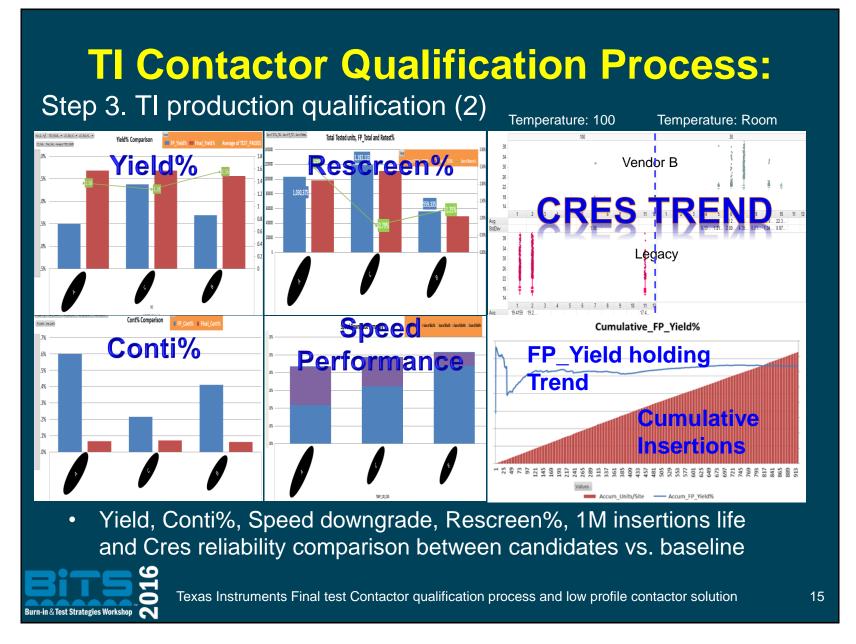
Reduce to 1

TI Contactor Qualification Process:

Step 3. TI production qualification (1)

- Engineering Evaluation
 - Prove in using actual device
- Production qualification in A/T site (Volume data and lifetime)
 - Yield, Miss-contact, lifetime, etc.

**		Parameter	Units					. '	ı voc	iuc	C	U		
1			Manufacture						Pin solution					
2	SS		Pin Model #				>	ļ '	i ili solution					
3	Class		Package					per vendor						
4	٦		Pin Use				No	n)				Τ.		
5	4		Status			A	_	s 🛭 🗸						
6	Cost	Price/pin	US\$		P	F	Y		Lotary					
7	اں	Price/DUT Pin	US\$		II re	a		1	- 40 a	5 55				
8	_	Socket Cost	US\$ ea@ 8 pcs			ľ	0	V	100	9 M				
9		V-U CDU	Pin Drawing#			٠,		ľ	\					
10		Working CPH		mm 3.30		+	3.30	1	3.30	+	3.30		ł	
2	g	Force @ cph Min Pitch	grams	20 25 0.4 0.4		0.4	25 24.5 0.4			_	H^{-}			
3	Mechanical	PCB Pre-Load	mm		0.20		0.4	\rightarrow	/	+	0.4			
14	죕	DUT	mm	0.20		+	0.20	\dashv		+	0.25	_	t	
15	ec		(PCB Side)		Radius		Radiu	5	Flat-4		vn-roun			
6	ĮΣ	Tip Shape	(Dut Side)	4 Pts Crown		, †	4 Pts Cro	\rightarrow			pt cro		t	
17		Temp	Deg C	-55 to 130 N.A.		_	-40 to 1	_	-50 to 1	50	to 155		İ	
18		Kelvin F/S Pin	mm			\top	N.A.		NA			Ť		
19		Cres	mOhm	60 3		\top	50	\neg	~51			Ť.		
20		000	Amps			\dashv	2.75		27		2		Ť.	
21	恧	Induct Self	nH —		Suppli	- Pitch	Metal C	Pin Tes	DUT /	OCC Cor	Mis-	t Combon	Comments	
22	ĕ	Induct Mutual			Pin PN		er (mm)	/ Plat	ing Height (mm)		PCB TIP Shape			PPM
23	Electrical	Cap Gnd	pF			0.4	BeCu	/Au 5.05	Crown	4.75 1.09	2.9K	500K	ien Purpose	
4	Ē	Cap Mutual			a		10.4	Locu	, ,	Crown	0.10	aJK	SSOR	pen r'urpose
25		Insertion Loss	GHz @ -1dB		b	١¥	0.5/.65	BeCu	/ Au 5.2	Crown Crown		1.24K	K 500K	ien Purpose
26		Return Loss (S11)	GHz @ -20dB			/endor A	-				0.10 3.85 0.94			
27		DUT Tip	Plating Material	411	C	\ e	0.5/.65	Au Al	lloy 5.2	2 Crown Crown	0.94 1.00 0.05	436	700K	Low CRES
28	-		ip Base Material				0.61.05	BeCu / A	/Au 5.2	Crown	8.40	436	70016	
9	Chemical		Plating Material		d		0.5/.65	веСи	/ Au 5.2	Crown	0.10		700K	en Purpose
30	E		ip Base Material		е	В	0.5/.65	BeCu	/Au 5.2	Crown Crown	2.32 0.71 2.00		700K	Drop In Replacement
31	٤		Spring Matl							Cionii	0.30 7.50			Drop In
2.7	٦		Housing Matl	Va	f	С	0.5/.65	BeC NiRh+l	u / ECC 5.3	Crown Crown	2.20	2.87K	1600K	Replacement (High Cycle

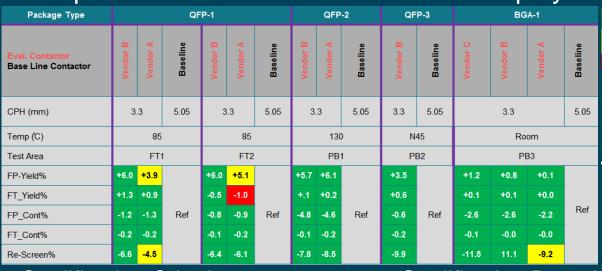


Texas Instruments Final test Contactor qualification process and low profile contactor solution

14

Test unit (A1 to A8) on Site 1 and unit (B1 to B8) on Site 2.
 Re-test unit (B1 to B8) on Site 1 and unit (A8 to A1) on Site 2.

Repeat the same test sequence for Vendor A and B Contactors.



BiTS 2016

Cutting Edge - Advanced Technology / New Approaches

TI Contactor Qualification Process:

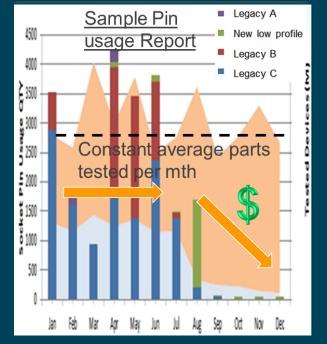
Step 4. Qualification data review and deployment

Qualification Criteria

- ✓ Cost
- ✓ Improved Performance (FP_Yield, FP_Conti%, Rescreen% & Pin life)
- ✓ Onsite Support

Qualification Boundary

- ✓ Temperature
- ✓ Pitch
- ✓ Test current
- √ Ω Trend (RDsOn/Cres)
- ✓ Test frequency / bandwidth



Texas Instruments Final test Contactor qualification process and low profile contactor solution

Summary

- Established a robust systematic qualification process
- Performance improvement
 - First Pass Yield improvement of 5%
 - Rescreen rate drops of 6%
 - √ Capacity recovery
 - ✓ Cost saving on labor and test equipment
- Achieving 1M or more insertion of Pin life
 - Cost saving from pin usage
 - Intangible labor cost saving
- Other intangible benefits
 - Better Yield correlation
 - Shorter Device start up time
 - Factories loading flexibility

