BiTS 2016

Proceedings Archive

Burn-in & Test Strategies Workshop

www.bitsworkshop.org

March 6-9, 2016

Presentation / Copyright Notice

The presentations in this publication comprise the pre-workshop Proceedings of the 2016 BiTS Workshop. They reflect the authors' opinions and are reproduced here as they are planned to be presented at the 2016 BiTS Workshop. Updates from this version of the papers may occur in the version that is actually presented at the BiTS Workshop. The inclusion of the papers in this publication does not constitute an endorsement by the BiTS Workshop or the sponsors.

There is NO copyright protection claimed by this publication. However, each presentation is the work of the authors and their respective companies: as such, it is strongly encouraged that any use reflect proper acknowledgement to the appropriate source. Any questions regarding the use of any materials presented should be directed to the author/s or their companies.

The BiTS logo and 'Burn-in & Test Strategies Workshop' are trademarks of BiTS Workshop.

2

BiTS 2016

Proceedings Archive

BiTS 2016

Stimulating Simulating - Simulation

Optimizing the PCB-to-socket Interface

Gert Hohenwarter GateWave Northern, Inc.

2016 BiTS Workshop March 6 - 9, 2016

Burn-in & Test Strategies Workshop

www.bitsworkshop.org

March 6-9, 2016

BiTS 2016

Stimulating Simulating - Simulation

Objective

- Highlight impact of via field design on socket and signal path performance
- Examine methods on how to improve that performance
- Identify some of the unique challenges of designing for automotive radar systems

Optimizing the PCB-to-socket Interface

Burn-in & Test Strategies Workshop

BiTS 2016

Stimulating Simulating - Simulation

Approach

- Set up simulations that highlight impact of changes in via field on insertion and return loss
- Examine impact of these changes on overall system performance
- Develop criteria regarding interface construction and optimization

Optimizing the PCB-to-socket Interface

Burn-in & Test Strategies Workshop

Stimulating Simulating - Simulation

Burn-in & Test Strategies Workshop

BiTS 2016

Stimulating Simulating - Simulation

BiTS 2016

Burn-in & Test Strategies Workshop

BiTS 2016

Stimulating Simulating - Simulation

Parameters to consider

- Pad diameters
- Via diameters
- Anti-pad sizes
- Dielectric constants, i.e. PCB materials
- Stubs
- Line widths

Under control of the PCB designer

Optimizing the PCB-to-socket Interface

Burn-in & Test Strategies Workshop

BiTS 2016

Stimulating Simulating - Simulation

Parameters to consider

- Ground locations
- Ball sizes
- IC parameters e.g. routing on IC
- Rise times

NOT under control of the PCB designer

Optimizing the PCB-to-socket Interface

Burn-in & Test Strategies Workshop

Stimulating Simulating - Simulation

BiTS 2016

Burn-in & Test Strategies Workshop

Stimulating Simulating - Simulation

BiTS 2016

Burn-in & Test Strategies Workshop

Stimulating Simulating - Simulation

Burn-in & Test Strategies Workshop

Stimulating Simulating - Simulation

BiTS 2016

Eye diagram of PCB with socket

There is no point investigating the difference between optimized and unoptimized via fields in this case Long lines, 6 GB/s, optimized interface

Optimizing the PCB-to-socket Interface

Burn-in & Test Strategies Workshop

BiTS 2016

Stimulating Simulating - Simulation

Eye diagram of PCB with socket

Burn-in & Test Strategies Workshop

Burn-in & Test Strategies Workshop

BiTS 2016

Stimulating Simulating - Simulation

Eye diagram of PCB with socket

Optimizing the PCB-to-socket Interface

Burn-in & Test Strategies Workshop

Burn-in & Test Strategies Worksho

BiTS 2016

Stimulating Simulating - Simulation

Eye diagram of PCB with socket

This is also a form of optimization Short lines, 6 GB/s, 35 Ohm PCB – 72 Ohm socket

Optimizing the PCB-to-socket Interface

Burn-in & Test Strategies Workshop

BiTS 2016

Stimulating Simulating - Simulation

Burn-in & Test Strategies Workshop

Bits 2016

Stimulating Simulating - Simulation

Performance with CPW

16

Burn-in & Test Strategies Workshop

BiTS 2016

Stimulating Simulating - Simulation

Burn-in & Test Strategies Workshop

BiTS 2016

Stimulating Simulating - Simulation

Examine Impact of Two Variables

Burn-in & Test Strategies Workshop

Stimulating Simulating - Simulation

Bits 2016

Burn-in & Test Strategies Workshop

Stimulating Simulating - Simulation

BiTS 2016

Burn-in & Test Strategies Workshop

Stimulating Simulating - Simulation

BiTS 2016

Burn-in & Test Strategies Workshop

BiTS 2016

Stimulating Simulating - Simulation

Burn-in & Test Strategies Workshop

www.bitsworkshop.org

22

BiTS 2016

Stimulating Simulating - Simulation

Conclusion

- Inattentive via field design will impact socket performance
- A 'good' socket may not work as well in such an application while a 'bad' one might
- Automotive radar interfaces demand careful attention to interface and signal path optimization

Optimizing the PCB-to-socket Interface

Burn-in & Test Strategies Workshop