Proceedings Archive

Burn-in & Test Strategies Workshop

www.bitsworkshop.org

March 15-18, 2015

Proceedings Archive

Copyright Notice

The presentation(s)/paper(s) in this publication comprise the Proceedings of the 2015 BiTS Workshop. The content reflects the opinion of the authors and their respective companies. They are reproduced here as they were presented at the 2015 BiTS Workshop. This version of the papers may differ from the version that was distributed in hardcopy & softcopy form at the 2015 BiTS Workshop. The inclusion of the presentations/papers in this publication does not constitute an endorsement by BiTS Workshop or the workshop's sponsors.

There is NO copyright protection claimed on the presentation content by BiTS Workshop. However, each presentation is the work of the authors and their respective companies: as such, it is strongly encouraged that any use reflect proper acknowledgement to the appropriate source. Any questions regarding the use of any materials presented should be directed to the author(s) or their companies.

The BiTS logo and 'Burn-in & Test Strategies Workshop' are trademarks of BiTS Workshop. All rights reserved.

Burn-in & Test Strategies Workshop

Poster Session

The Next Generation of Scrub Contacting Technology

Bert Brost and Tony Tiengtum

Back to the Basics

Basics of Contactor Design

Keep it simple Solve the right problems Generate implementable solutions Create realistic models Leverage adaptive models

Burn-in & Test Strategies Workshop www.bitsworkshop.org

Poster Session

Contacting Challenges and Solutions

Challenges

- · Provide an improved scrub at the lead/pad of the device
- Isolate scrub action from the test interface board pads
- · Increase real contact surface area for low contact resistance
- Create a high bandwidth 50 Ohm impedance interconnect
- · Error-poof contactor assembly and rebuild maintenance

Solution

- Ball in socket design
- Scrub along the circumference of a circle
 - · Rotation of the pin on a fixed axis for improved scrub
- · Isolate scrub action from test interface board pads
 - · Motion of pin control with a stationary mount
- Operate in the ≥ 60 GHz range
 - Short electrical path

BiTS 2015

The Next Generation of Scrub Contacting Technology

2

Poster Session

Contactor Basics for Simplicity

PHYSICAL PROPERTIES

Material	Homogeneous Metal Alloy
Signal Length	0.6636 mm
Contact Height at Rest	0.7188 mm
Pad Scrub	250 μm
Contact Force	75 grams
Contact Pin Life	700,000 Insertions
Cleaning Cycles	30,000 Insertions

ELECTRICAL PROPERTIES

Inductance	0.18 nH
Current	3 Amps
Resistance	< 0.03 Ohms
Impedance	45 Ohms (25 ps rise time)
Return Loss	32 GHz @ -10 dB
Insertion Loss	40 GHz @ -1 dB

Customer Measured Performance

Conclusion

- Provides a good surface scrub and self cleaning
- · Decoupled motion from test interface board pad
- Maintains pointing accuracy (allowable tolerance)
 - · Ensures repeatable self alignment
 - Repeats forces in the Z, X, and Y
- Decouples forces from load board pads
- Reduced solder stick (intermetalic migration) with a homogeneous alloy

BiTS 2015

The Next Generation of Scrub Contacting Technology

3