

Keynote Speaker

Monday 3/10/14 9:00am Kiva Ballroom

INTERCONNECTOLOGY - THE ROAD TO 3D by Simon McElrea

President

Invensas Corporation

L ast year's Talking Points talk show introduced you to Interconnectology, a holistic approach to microelectronics manufacturing describing both technical interconnection, and supply chain partnership interconnection. This year's Keynote Speaker, Simon McElrea, President at Invensas, the Interconnectology Company, will explain why his company is spearheading this approach to manufacturing, and how it is more important than ever.

ABSTRACT

nterconnectology is everything involved with getting "Silicon into Systems": a holistic approach describing both technical interconnection and supply chain partnership interconnection. Nowhere does this concept apply more than in the commercialization of 2.5D and 3D integration technologies. From design, to processes, and equipment and material development, to manufacturing and test, 2.5D interposer products and 3D ICs require collaboration across the value chain to achieve high yielding devices, optimum cost-of-ownership and rapid time-to-market: all critical elements for today's consumerdriven market. Further, the middle-end-of-line (MEOL) processes require engineering knowledge that spans front- and back-end processing through to packaging, assembly and test. Consumer trends that are bringing about the need for Interconnectology to be adopted as a concept industry wide will be discussed.

COPYRIGHT NOTICE

The paper(s) in this publication comprise the Proceedings of the 2014 BiTS Workshop. The content reflects the opinion of the authors and their respective companies. They are reproduced here as they were presented at the 2014 BiTS Workshop. This version of the papers may differ from the version that was distributed in hardcopy & softcopy form at the 2014 BiTS Workshop. The inclusion of the papers in this publication does not constitute an endorsement by BiTS Workshop, LLC or the workshop's sponsors.

There is NO copyright protection claimed on the presentation content by BiTS Workshop, LLC. (Occasionally a Tutorial and/or TechTalk may be copyrighted by the author). However, each presentation is the work of the authors and their respective companies: as such, it is strongly encouraged that any use reflect proper acknowledgement to the appropriate source. Any questions regarding the use of any materials presented should be directed to the author(s) or their companies.

The BiTS logo and 'Burn-in & Test Strategies Workshop' are trademarks of BiTS Workshop, LLC. All rights reserved.

Interconnectology – The Road to 3D

Simon McElrea Invensas Corporation

2014 BiTS Workshop March 9 - 12, 2014

1

Interconnectology The Road to 3D

2014 BiTS Workshop ~ March 9 - 12, 2014

The level of Hardware Engineering now required to build the miniaturized & wearable devices of tomorrow, is Package Engineering (what Invensas calls Interconnectology).

BiTS 2014	Interconnectology – The Road to 3D	3	invensas ⁻

Although the die area per package technology (line loading) is hardly changing, the return on the advanced nodes, flip-chip, stacked-CSP, WLP, is growing at 20% CAGR.

PRISMARK BiTS 2014	Interconnectology – The Road to 3D	5	invensas [.]

2014 BiTS Workshop ~ March 9 - 12, 2014

Mobility ...

2014 BiTS Workshop ~ March 9 - 12, 2014

How Many "Things"?

- 10⁷ Internet infrastructure servers, networking...
- 10⁸ Cars; appliances
- 10⁹ PCs; smartphones; tablets; watches; TVs; people; clocks; radios
- 10¹⁰ Headsets; peripherals; lights and switches; anything with a battery
- 10¹¹ Tags, tickets
- 10¹² Pills

GARTNER BiTS 2014	Interconnectology – The Road to 3D	14	ínvensas [.]
	2014 BiTS Workshop ~ March 9 - 12 201	4	

2014 BiTS Workshop ~ March 9 - 12, 2014

The New Normal: Lower Semiconductor Content/System

BOM Breakdown (By \$)

Description	Package Type	Piece Cost	Cum. BOM Cost	Cum BOM %	Pin Count	Package Brand
Dual-Core Applications Processor	BGA-POP	\$33.200	\$33.200	21%	1564	Apple
Multimode Baseband Processor w/ Memory	BGA Stacked 2	\$22.810	\$56.010	36%	383	Qualcomm
Multichip Memory - 32 GB MLC iNAND Flash, Memory Controller	BGA Stacked 5	\$17.620	\$73.630	48%	60	SanDisk
Multichip Memory - 1 GB Mobile DDR2 SDRAM	BGA-POP-2	\$5.220	\$78.850	51%	272	Elpida
8 MP BSI CMOS Image Sensor	СОВ	\$4.850	\$83.700	54%	65	Sony
WiFi 802.11a/b/g/n / Bluetooth / FM Radio Module	MCP - 5 Chips	\$4.610	\$88.310	57%	52	Murata
GSM / W-CDMA / LTE RxD Transceiver + GPS	BGA	\$3.910	\$92.220	60%	196	Qualcomm
Stereo Audio CODEC	BGA	\$3.150	\$95.370	62%	140	Apple
3-Axis MEMS Gyroscope	MCP - 2 Chips	\$2.980	\$98.350	63%	16	STMicroelectronic
Power Management	BGA	\$2.650	\$101.000	65%	276	Apple
W-CDMA Band I & LTE Band IV Power Amplifier	MCP - 3 Chips	\$1.920	\$102.920	66%	31	Avago
W-CDMA Bands II & V Power Amplifier	MCP - 2 Chips	\$1.530	\$104.450	67%	31	Skyworks
1.2 MP CMOS Image Sensor	СОВ	\$1.480	\$105.930	68%	16	Sony
Diversity Rx Antenna Switch w/ SAW Filters	MCP - 2 Chips	\$1.430	\$107.360	69%	24	Murata
3-Axis MEMS Accelerometer	MCP - 2 Chips	\$1.400	\$108.760	70%	16	STMicroelectronic
Touchscreen Line Driver ?	Flip Chip, Solder	\$1.380	\$110.140	71%	99	TI
TFT-LCD Display Driver	Flip Chip, Adhesive	\$1.250	\$111.390	72%	1113	Renesas SP Drivers
Camera: Auto Focus	Module	\$1.250	\$112.640	73%	2	
Power Management	Flip Chip, Solder	\$1.190	\$113.830	73%	106	Qualcomm
Touchscreen Controller	Flip Chip, Solder	\$0.980	\$114.810	74%	56	Broadcom
W-CDMA Band VIII Power Amplifier	QFN	\$0.880	\$115.690	75%	14	TriQuint
RF Antenna Switch	QFN	\$0.880	\$116.570	75%	20	Murata
Audio Amplifier	Flip Chip, Solder	\$0.600	\$117.170	76%	42	Apple
Port: Lightning	Connector	\$0.500	\$117.670	76%	10	
Quad-Band GSM Power Amplifier	MCP - 2 Chips	\$0.440	\$118.110	76%	14	Skyworks
GPS Front-End Module	DFN	\$0.320	\$120.190	78%	12	Skyworks
Display Port Multiplexer ?	Flip Chip, Solder	\$0.320	\$120.510	78%	36	NXP Semiconducto

3D Packaging (Package on Package & Stacked Die CSP) accounts for over 2/3 of the packaged-IC BOM cost (~\$80).

TECHINSIGHTS BiTS 2014	Interconnectology – The Road to 3D	23	ín <mark>v</mark> ensas [.]

Why The PoP Love Affair?

- · Each device is packaged separately
 - Mature technology and infrastructure
- Each component is tested and burned-in separately at the package level
 - Mature technology and infrastructure
- No margin stacking
 - Each component is sourced separately by OEM or EMS provider
- Joining technology widely available
 - Utilizes standard SMT process and existing manufacturing platform
- Joining process is very high yielding
- · Relatively clear ownership of defect liability
 - Failure analysis methods are mature

Why 3D?: It's Mostly About Cost

Moore's Law is a Law of Economics.

BiTS 2014	Interconnectology – The Road to 3D	27	ínvensas [.]
	the second se		

The cost per fab, R&D cost per node, and design cost per device, grow beyond a tipping point below 20nm. 3DIC design architecture allows technologies to be built "at the right node" and then stacked, which is much more cost-effective overall, and not exclusive to 2-3 players.

BiTS 2014	Interconnectology – The Road to 3D	28	ínvensas [.]

ITRS BiTS 2014

Keynote Address

By ITRS' definition, We Are There! Between the FPGA, Memory Cube, Wide-IO and Interposer-based products we are at this inflection point!

Interconnectology – The Road to 3D

15

invensas

3DIC Equipment Suppliers Surveyed

Process Step	Leading Equipment Providers
Wafer Thinning/Stress Reduction	Disco, TOK, Accretech, Lam
Via Patterning (Lithography/Stepper)	EVG, SUSS, ASML, Nikon, Canon, Ultratech, Tamarack, Anvik
Via Etch (DRIE/Bosch)	SPTS, Applied, Lam, Hitachi High Tech, ULVAC
Laser Drill	ESI, Hitachi, Mitsubishi
Stripping/Cleaning	Applied, Novellus, Lam, Applied, TEL
Via Fill Barrier/Seed Layers	Oerlikon, Novellus, NEXX/TEL, Applied, SPTS, EVG,
(Deposition/Coating/CVD)	Hitachi High Tech, EEJA
Via Fill Plating	Applied, NEXX/TEL, SPTS, Ebara, Novellus, EEJA
Stripping/UBM Etch	Semitool, Lam
СМР	Applied, Novellus, Ebara, Accretech
Carrier Bonding	EVG, SUSS, TOK, AML
Wafer Thin to Expose Vias	Disco, TOK, Accretech
RDL	SUSS, Ultratech, Novellus, EVG, Novellus, NEXX/TEL
Dicing	ESI, Alcatel, Accretech, Disco
Carrier Debonding	EVG, SUSS, TOK, ASML
	Datacon/BESI, Palomar, K&S, PanasonicFA, EVG,
Die to Wafer Bonding	ASML, Finetech, Hesse & Knipps, PacTech,
5	Hitachi High Tech, SUSS

BiTS 2014	Interconnectology – The Road to 3D	33	invensas
provide and the second s	a second the second	Contraction of the	

But Who Pays? The IDM, Foundry, Fabless or OSAT?

3D Process & Cost Chokepoints Micro-Bumping & Bonding Yield Bump Design · Alignment · Bonding · Reliability Thin Wafer Handling Alternative Flows · Temp Bonding Schemes Stress Management & Rel. Low stress · Alignment · Bonding · Reliability Thermal Management Thermal Vias · Thermal Design **TSV Structure Integrity** Barrier & Seed · Low Stress · High AR · Reliability Integration invensas **BiTS 2014** 38 Interconnectology - The Road to 3D

Bonding Method	C4 FC (Contolled Collapse Chip Connect)	C2 FC (Chip Connect)	TC/LR (Local Reflow) FC	TC FC
Bond Structure				
Major Bump Pitch Range at Application	> 130 um	140 um ~ 60 um	80 um ~ 20 um	< 30 um
Bonding Method	Conventional Reflow	Reflow with Cu pillar	Thermal Compression with Cu pillar	Thermal Compression
Bump Metallurgy	Solder (SnAg or SnAgCu)	Cu + Solder (SnAg or Sn)	Cu + Solder (SnAg or Sn) Cap	- Cu - Metal/Metal
Bump Collapse	Yes	No	No	No
Underfill Method	- Capillary - No flow	- Capillary - No flow - Wafer Level	- No flow - Wafer Level	- No flow - Wafer Level

2014 BiTS Workshop ~ March 9 - 12, 2014

2014 BiTS Workshop ~ March 9 - 12, 2014