

PRODUCT AND MATERIAL MÉLANGE

This final session focuses on new products and materials in the test and burn-in market. The first presentation looks at high-temperature burn-in readiness, discussing a burn-in socket solution designed to address cost, design and performance challenges of high temperature burn-in. Next on the agenda is a description of new technologies developed to produce high reliability stamped parts and elastomer contacts for a finer pitch and high performance applications. The final presentation covers a new and innovative ESD control molding compound for encapsulation, developed to reduce the ESD issues in the test process.

High Temperature Burn-in (Up to 200° C): Are We Ready Yet?

Noriyuki Matsuoka, Kazumi Uratsuji —Yamaichi Electronics Co., Ltd. Jec Sangalang—Yamaichi Electronics USA Ryota Takeuchi—NGK Insulators, Ltd.

Development of High Performance Spring Probe Pin and Elastomer Contact by Stamping

Samuel Pak, A.J. Park—IWIN Co. Ltd.

ESD Safe Materials for Test Socket and Encapsulation

Tatsuya Kawasaki—Krefine Co., Ltd.

COPYRIGHT NOTICE

The paper(s) in this publication comprise the Proceedings of the 2013 BiTS Workshop. The content reflects the opinion of the authors and their respective companies. They are reproduced here as they were presented at the 2013 BiTS Workshop. This version of the papers may differ from the version that was distributed in hardcopy & softcopy form at the 2013 BiTS Workshop. The inclusion of the papers in this publication does not constitute an endorsement by BiTS Workshop, LLC or the workshop's sponsors.

There is NO copyright protection claimed on the presentation content by BiTS Workshop, LLC. (Occasionally a Tutorial and/or TechTalk may be copyrighted by the author). However, each presentation is the work of the authors and their respective companies: as such, it is strongly encouraged that any use reflect proper acknowledgement to the appropriate source. Any questions regarding the use of any materials presented should be directed to the author(s) or their companies.

The BiTS logo and 'Burn-in & Test Strategies Workshop' are trademarks of BiTS Workshop, LLC. All rights reserved.

High Temperature Burn-in (Up to 200° C): Are We Ready Yet?

Noriyuki Matsuoka, Kazumi Uratsuji Yamaichi Electronics Co., Ltd. Jec Sangalang – Yamaichi Electronics USA Ryota Takeuchi – NGK Insulators, Ltd.

2013 BiTS Workshop March 3 - 6, 2013

NG

Contents

Background & Previous BiTS Work Present Socket's Performance at 200°C Key Considerations in Creating a 200°C Capable Burn-in Socket Examination of Contact and Mold materials in the market Newly Developed BeCu Contact Force per unit area Socket Evaluation at 200°C Compare 150°C and 200°C evaluation data Conclusions & Next Steps

3/2013

High Temperature Burn-in (Up to 200 Deg. C): Are We Ready Yet?

Product and Material Mélange

Previous BiTS Work											
Using Clad Alloys to M Temperature Burn-in a	lake H and Te	igh est	Res	sear	ch [)riv	ina	For	'ces		
SOCKEIS Terry Morinari			ature	Metric	2003	2005	2007	2009	2014	2019	Barrier
Enplas Semiconductor Peripheral Corp.		5	Types	Types SO, LGA, BGA, mBGA, QFN, DFN, CSP, etc.							
Jimmy Johnson Materion Brush Performance Alloys			Matl.	Alloy		Cu Alloy [brass, BeCu]				Same/New	None
	enplas	as	ontacts	#	1,000	1,000	2,000	3,000	5,000	10,000	10,000
2012 BiTS Workshop			avities	#	1	1	2	4	8	16	64
Barre late: That Revised Workshop March 4 - 7, 2012	MATER	ION	h	mm	0.65	0.4	0.3	0.3	0.25	0.2	100µm
		Max. E	uge Rate	GHz	3	6	12	24	40	≥ 10Gbps	20Gbps
	Inductance		ince	nH	1	1	0.4	0.3	0.2	0.1	0.1
	Contac		t Matl.	Alloy		Cu	Alloy [Bed	Cu]		Same/New	None
		Max #	Contacts	#	1,000	5,000	10,000	10,000	10,000	10,000	Pkg Size
	Burn-In	Max. #	Cavities	#	16	32	32	64	64	64	64
	Sockets	Min. Pit	tch	mm	1	0.8	0.65	0.5	0.3	<u><</u> 0.3mm	0.2
		Max. Te	emp.	°C	150	150	150	175	250	250	250
	Housing		Material	Thermoplastic 250°C 250					250		
	S 3/2	ource 2012	: Bishop Ind Using C	& Assoc ustry and lad Alloys to	ciates li d Conn Make Hig	nc., Po lector F gh Tempe	ost Rec Road M trature Bu	ession 1ap 200 m-in and	Outloc)9-201 Test Sock	ok Electro 9 ^{ets}	onics 4
3/2013 High Temp	erature I	3urn-i	n (Up to	200 De	g. C): A	vre We	Read	y Yet?			4

Product and Material Mélange

Key Considerations in Creating a 200°C Capable Burn-in Socket

Performance

Electrical : Stable contact resistance Mechanical : Minimal contact force reduction, Mechanical life

Socket outline

As small as possible but meeting performance expectation At least the same size as the current socket

Price

As low as possible

3/2013

High Temperature Burn-in (Up to 200 Deg. C): Are We Ready Yet?

Product and Material Mélange

Examination of Contact material (Available materials in the market)

Contact Material

Present : BeCu Considered : TiCu, NiBe

	BeCu	TiCu	NiBe			
Young's Modulus (CDa)	107	107	195-210			
foung's modulus (GPa)	127	127	BeCu x 1.6			
Tensile Strength (MPa)	1328	885-1080	1584			
Viold Ctropyth (MDa)	1110	800-900	1380			
rield Strength (MPa)	1140	BeCu x 0.8	BeCu x 1.2			
Electrical Conductivity (%IACS)	22	10 to 13	4 to 6			
Cost Comparison	100	120	650			
No suitable contact material in the market for 200°C BI						
3/2013 High Temperature Burn-in (Up to 200 Deg. C): Are We Ready Yet? 8						

To achieve the same features and price level of current socket High performance, but costly material cannot be utilized Improve present BeCu as contact material Minimize contact force reduction at 200°C Keep good balance of Young's modulus and Yield strength Consider 600MPa stress at 200°C Re-consider contact force Special contact surface treatment cannot be applied Increase contact force per unit area with smaller contact area Utilize present PES as mold material

11

Newly Developed BeCu

Succeeded in improving the present BeCu.

Result : Maintained Young's Modulus and

Electrical Conductivity

but Improved Yield Strength

Item	Unit	New BeCu	Present BeCu	Material spec of present BeCu
Young's Modulus	Gpa	127	127	
Tensile Strength	MPa	1374	1328	1240 to 1440
Yield Strength	MPa	1270	1186	more than 1100
Electrical Conductivity	%IACS	24.1	25.0	More than 22

3/2013

High Temperature Burn-in (Up to 200 Deg. C): Are We Ready Yet?

Product and Material Mélange

13

Stress Relaxation of actual contact

Comparison of New BeCu and Present BeCu

Test Description

- 1. Fix the base part of contact to the jig.
- 2. Load 0.22mm at contact point.
- 3. Heat soak at 200°C for 500hrs.
- 4. Measure Contact force and Contact deformation

Test Jig

High Temperature Burn-in (Up to 200 Deg. C): Are We Ready Yet?

5. Test sample : 3 contacts each

3/2013

Product and Material Mélange

Socket Evaluation at 200°C

Heat and Mechanical Stress test-1

Test Description

- 1. Check the contact force reduction and contact resistance under the test condition below;
- 2. Set "heat soak at 200°C for 24hrs and 4k times actuation" as 1 cycle.
- 3. Repeat up to 5 cycles
- 4. Measure Contact force and Contact resistance at "initial" and every cycle.
- 5. Contact resistance : for 2 contacts
- 6. IC device lead plating : Sn-Bi
- 7. Test sample : 1 each (details on the next page)

3/2013

High Temperature Burn-in (Up to 200 Deg. C): Are We Ready Yet?

Socket Evaluation at 200°C

Test sample : 1 each

Contact	Contact Tip	Mold	Contact	Contact	
Material	Shape	Material	Force	Resistance	
Present BeCu	Dound	PES	\checkmark	\checkmark	
	Rouna	PI	\checkmark	\checkmark	
	Edge L Coiping	PES		✓	
		PI	\	\checkmark	
New BeCu	Dound	PES	\checkmark	\checkmark	
	Rouna	PI	\checkmark	\checkmark	
	Edge L Coiping	PES		\checkmark	
		PI		\checkmark	

3/2013

High Temperature Burn-in (Up to 200 Deg. C): Are We Ready Yet?

Heat and Mechanical Stress test-2

Test Description

- 1. Check the contact resistance and observe IC lead and contact tip under the test condition below
- 2. Set "heat soak at 200°C for 12hrs and 2k times actuation" as 1 cycle.
- 3. Repeat up to 10 cycles.
- 4. Measure Contact resistance at "initial" and every cycle.
- 5. Contact resistance : for 2 contacts
- 6. Observe contact mark on IC lead
- 7. Observe contact tip after 10 cycles
- 8. IC device lead plating : Sn-Bi
- 9. Test sample : 2 (New BeCu + Edge with coining + PES)

3/2013

High Temperature Burn-in (Up to 200 Deg. C): Are We Ready Yet?

Paper #1 10

Product and Material Mélange

Product and Material Mélange

Mechanical stress test

Actuate the contact pins until one of them is broken.

Room Temperature

Test Sample : 1 each

Assembled in socket

Test Result

Present BeCu: 23k (Broke in 24k)

New BeCu : 23k (Broke in 24k)

No difference between new BeCu and Present BeCu in terms of mechanical durability

3/2013

High Temperature Burn-in (Up to 200 Deg. C): Are We Ready Yet?

Compare 150°C and 200°C evaluation data

Contact force reduction

Compare 150°C and 200°C evaluation data

Contact Resistance

Product and Material Mélange

Conclusions

QFP Open Top Socket with combination of Newly Developed BeCu, Edged Contact Tip and Present Mold can be used for 200°C Burn-in.

The same level of

Contact Resistance, Contact Mechanical Life, Contact Electrical Conductivity, Socket Outline, Operation Force

as 150°C Burn-in can be achieved. 3/2013 High Temperature Burn-in (Up to 200 Deg. C): Are We Ready Yet?

27

Paper #1 14