

BRING IT TO THE BOARD (PCB)

The device under test (DUT) board is sometimes overlooked as a critical element in test-and burn-in strategies. This session brings PCBs into the limelight. The first presentation will cover some of the challenges that various DUT layouts present, demonstrating to semiconductor and ASICS design engineers the importance of considering final test hardware when designing device layouts. Another important consideration, covered in the second presentation, is the importance of performing RF characterization and simulation in-house to accurately measure the materials' electrical performance.

Building Optimized Test PCB's Starts at the DUT

Joe Birtola—CMR Summit Technologies

High Frequency PCB Material Characterization and Simulation

Ryan Satrom—Multitest

MARKET REPORT

As a bonus in this session, you'll get a look at the marketplace for test equipment and test consumables

Market Trends in Test Equipment and Test Consumables

John West—VLSI Research

COPYRIGHT NOTICE

The paper(s) in this publication comprise the Proceedings of the 2013 BiTS Workshop. The content reflects the opinion of the authors and their respective companies. They are reproduced here as they were presented at the 2013 BiTS Workshop. This version of the papers may differ from the version that was distributed in hardcopy & softcopy form at the 2013 BiTS Workshop. The inclusion of the papers in this publication does not constitute an endorsement by BiTS Workshop, LLC or the workshop's sponsors.

There is NO copyright protection claimed on the presentation content by BiTS Workshop, LLC. (Occasionally a Tutorial and/or TechTalk may be copyrighted by the author). However, each presentation is the work of the authors and their respective companies: as such, it is strongly encouraged that any use reflect proper acknowledgement to the appropriate source. Any questions regarding the use of any materials presented should be directed to the author(s) or their companies.

The BiTS logo and 'Burn-in & Test Strategies Workshop' are trademarks of BiTS Workshop, LLC. All rights reserved.

HIGH FREQUENCY PCB MATERIAL CHARACTERIZATION AND SIMULATION

Ryan Satrom Multitest

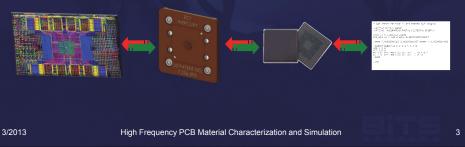
2013 BiTS Workshop March 3 - 6, 2013

Agenda

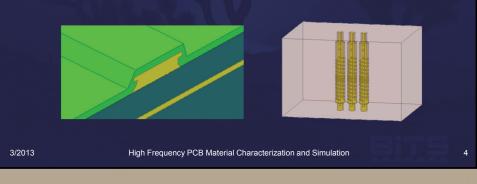
- Importance of Characterization
- Characterization Project Scope
- Characterization Project Method
- Material Comparisons & Results
- Conclusions

3/2013

Paper #2 1


High Frequency PCB Material Characterization and Simulation

Importance of Characterization

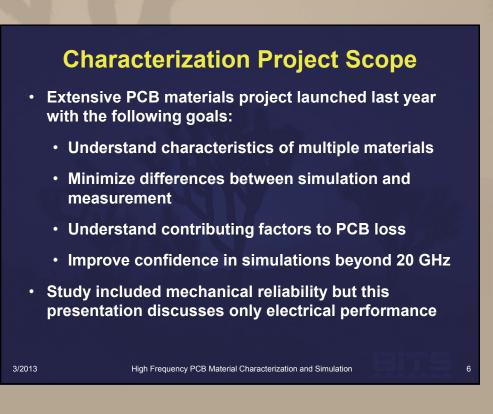

- Multitest has run test interface simulations for about a decade
- Simulation provides confidence that the interface is designed correctly the first time
- Simulations include any or all of the following:
 - PCB (vias, components)
 Package
 - Contactor

Device

- Reliable simulation results require accurate models
- Extensive simulation-to-measurement correlation for both PCBs and contactors is critical
- Correlation ensures models accurately represent physical design

Importance of Characterization

- Test vehicles required to confirm model accuracy
- Vehicles must be created by target fabricator
- Hardware is fabricated using same techniques as end products
- Multitest manufactures both PCBs and contactors


High Frequency PCB Material Characterization and Simulation

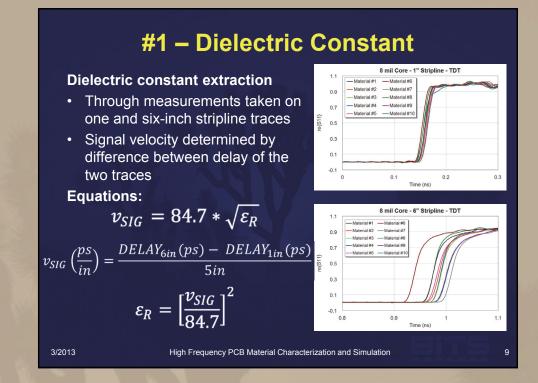
• Test vehicles can be created quickly and easily

3/2013

Characterization Project Method

- Fabricate boards from ten different PCB materials
- Each board includes:
 - Traces on two different core thicknesses
 - Both microstrip and stripline
 - One, four, and six-inch traces
 - Backdrill
- Via and pad geometries optimized through simulation

Material Comparisons


Several material comparisons described:

- 1) Dielectric Constant (ε_R)
- 2) Loss Tangent/Dissipation Factor (dF)
- 3) Insertion Loss
- 4) Board-to-Board Repeatability
- 5) Copper Roughness
- 6) Soldermask With vs. Without

3/2013

High Frequency PCB Material Characterization and Simulation

#1 -	- Die	lectri	ic Co	onstan	t			
Measured ε _R vs.	spec ((delta):	4 mil	vs. 8 mil	core (d	elta):		
Measure	ed ε _R			Measure	ed ε _R			
Deviation fro	om Spec			4 mil vs. 8 mil Core				
Material #1	0.16			Material #1	-0.04			
Material #2	-0.18			Material #2	0.37			
Material #3	-0.12			Material #3	0.15			
Material #4	-0.06			Material #4	0.26			
Material #5	0.02			Material #5	0.18			
Material #6	-0.04			Material #6	0.18			
Material #7	0.13			Material #7	0.34			
Material #8	-0.03			Material #8	0.16			
Material #9	0.36			Material #9	-0.12			
Material #10	-0.07			Material #10	0.12			
 Difference _{AVG} = 0.12 Difference _{MAX} = 0.36 Difference _{MAX} = 0.37 								
Typical P	CΒ ε _R ۱	values a	ire bet	ween 3 ar	nd 4			
3/2013 Hig	h Frequency F	PCB Material Ch	aracterization	and Simulation	Ei	10		

#1 – Dielectric Constant

Conclusions:

- Measured ϵ_R and datasheet ϵ_R are different**
- Thicker cores typically have a higher ϵ_R

**One vendor actually specifies two values: Process specification Dk/ $\epsilon_{\rm R}$ and Design Dk/ $\epsilon_{\rm R}$

High Frequency PCB Material Characterization and Simulation

3/2013

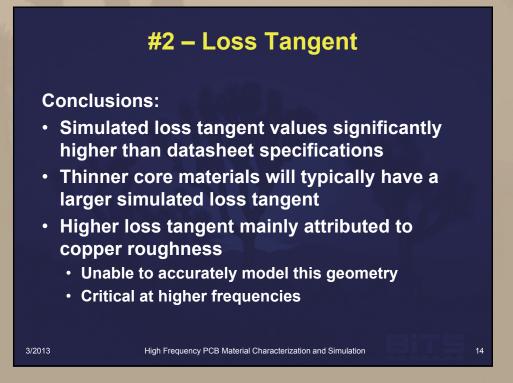
#2 – Loss Tangent

Loss tangent extraction

- · Paths modeled in HFSS
- Models represent physical geometry as closely as possible

 Simulations executed with multiple loss tangent values to find best match to measured insertion loss

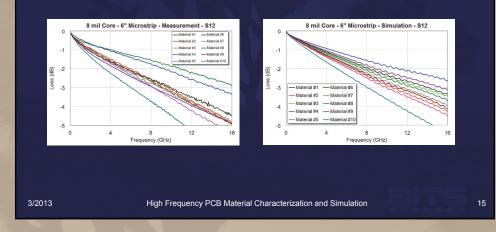
3/2013 High Frequency PCB Material Characterization and Simulation



Burn-in & Test Strategies Workshop

Bring it to the Board (PCB)

Session 4


#2 – Loss Tangent							
Curve-Fit dF vs.	spec (delta):	4 mil	vs. 8 mil	core (d	lelta):	
Curve-F	it dF			Curve-F	it dF		
Deviation fro	om Spec			4 mil vs. 8 r	nil Core		
Material #1	0.007			Material #1	-0.005		
Material #2	0.003			Material #2	-0.002		
Material #3	0.006	A State		Material #3	-0.002		
Material #4	0.004			Material #4	0.001		
Material #5	0.003			Material #5	0.000		
Material #6	0.003			Material #6	-0.002		
Material #7	0.005			Material #7	-0.002		
Material #8	0.002			Material #8	0.000		
Material #9	0.009			Material #9	-0.003		
Material #10	0.006			Material #10	-0.005		
 Difference _{AVG} = 0.005 Difference _{MAX} = 0.007 Difference _{MAX} = 0.005 							
Typical dF	Typical dF values are between 0.002 and 0.02						
3/2013 Hig	h Frequency F	PCB Material Ch	aracterization	n and Simulation		13	

#3 – Insertion Loss

 Plots compare simulations using datasheet ϵ_R and dF to VNA measurements

#3 –	Insertion	Loss

Simulation/measurement (4 mil) Simulation/measurement (8 mil)

Insertion loss delta:

4 mil core	Measurement vs. Datasheet Delta							
4 mil core	10 GHz	20 GHz	30 GHz	40 GHz				
Material #1	0.9 dB	1.6 dB	3.0 dB	3.7 dB				
Material #2	0.0 dB	0.2 dB	1.0 dB	2.0 dB				
Material #3	1.1 dB	1.8 dB	3.1 dB	4.3 dB				
Material #4	0.2 dB	0.7 dB	1.5 dB	2.4 dB				
Material #5	0.3 dB	0.5 dB	1.3 dB	2.4 dB				
Material #6	0.8 dB	1.2 dB	2.1 dB	2.9 dB				
Material #7	0.8 dB	1.3 dB	2.4 dB	3.4 dB				
Material #8	-0.6 dB	-1.1 dB	-1.6 dB	-2.9 dB				
Material #9	1.3 dB	2.2 dB	3.4 dB	4.7 dB				
Material #10	1.1 dB	1.8 dB	3.3 dB	4.2 dB				
Average	0.6 dB	1.0 dB	1.9 dB	2.7 dB				

Insertion loss delta:

8 mil core	Measurement vs. Datasheet Delta							
o mii core	10 GHz	20 GHz	30 GHz	40 GHz				
Material #1	0.7 dB	1.6 dB	2.8 dB	-0.9 dB				
Material #2	0.3 dB	1.1 dB	2.3 dB	-1.0 dB				
Material #3	0.8 dB	1.9 dB	3.1 dB	-0.5 dB				
Material #4	0.3 dB	1.2 dB	2.3 dB	-1.3 dB				
Material #5	0.6 dB	1.4 dB	2.6 dB	-1.3 dB				
Material #6	0.5 dB	1.3 dB	2.2 dB	-1.9 dB				
Material #7	0.7 dB	1.4 dB	2.4 dB	-1.6 dB				
Material #8	-0.6 dB	-0.7 dB	-0.5 dB	-4.4 dB				
Material #9	1.3 dB	2.4 dB	3.8 dB	0.5 dB				
Material #10	0.9 dB	1.9 dB	3.2 dB	-0.5 dB				
Average	0.6 dB	14 dB	2.4 dB	-1.3 dB				

Expected difference from data sheet specifications:

- Up to 1 dB at 10 GHz
- About 1 to 2.5 dB at 20 GHz

3/2013

High Frequency PCB Material Characterization and Simulation

Session 4

Bring it to the Board (PCB)

4 mil Core - 6" Microstrip - Measurement - S12

20 ency (GHz)

4 mil Core - 6" Stripline - Measurement - S12

Frequ

30

40

17

#4 – Board-to-Board Repeatability

-5

-15

-20

0

(qB) -10

erial #1 Brd -Material #1 Brd

Material #1 Brd Material #2 Brd

Material #2 Brd Material #2 Brd

10

- Three boards fabricated with each of three different materials
- Results show difference between the same trace on each board
- Traces are six inches

Microstrip traces:

	Micros	strip (4 mil c	ore)					이 것 같은 것 같은 것 같이 같이 같이 같이 않는 것 같이 않는 것 같이 않는 것 같이 않는 것 같이 없는 것 같이 않는 것 않는 것 같이 않는 않는 것 않는 않는 것 않는		
Freq	10 GHz	20 GHz	30 GHz	40 GHz			8 mil Core - 6	" Microstrip - Mea	asurement - S1	2
Material #1	0.1 dB	0.2 dB	0.3 dB	0.6 dB		0				
Material #2	0.2 dB	0.2 dB	0.3 dB	0.3 dB						
Material #3	0.2 dB	0.4 dB	0.5 dB	0.7 dB		-5				
Average	0.2 dB	0.3 dB	0.4 dB	0.5 dB		-0	- Material #1 Brd1	-	Contraction of the local division of the loc	
					ĝ	(qp)	Material #1 Brd2		Constant of the second s	b .
	8 - 1 - 1 - 7 - 1					o -10	- Material #1 Brd3		9	8
	Micros	strip (8 mil c	ore)			ss -10	- Material #2 Brd1			1.00
Freq	10 GHz	20 GHz	30 GHz	40 GHz	1		- Material #2 Brd3 Material #3 Brd1		and the second s	
Material #1	0.0 dB	0.0 dB	0.1 dB	0.3 dB		-15	- Material #3 Brd2			-
Material #2	0.1 dB	0.1 dB	0.3 dB	0.6 dB			- Material #3 Brd3			-
Material #3	0.1 dB	0.1 dB	0.2 dB	0.3 dB						
Average	0.1 dB	0.1 dB	0.2 dB	0.4 dB		-20				_
							0 10	20 Frequency (GHz)	30	

3/2013

#4 – Board-to-Board Repeatability

High Frequency PCB Material Characterization and Simulation

-5 (Bb) sso_ Stripline traces: -10 -15 Stripline (4 mil core) Freq 10 GHz , 30 GHz 40 GHz 20 GHz -20 Material #1 0.4 dB 0.7 dB 0.1 dB 0.2 dB 10 20 Frequency (GHz) 30 0.1 dB 0.2 dB 0.5 dB 0.5 dB Material #2 0.2 dB 0.3 dB 0.6 dB Material #3 0.4 dB Average 0.1 dB 0.3 dB 0.4 dB 0.6 dB 8 mil Core - 6" Stripline - Measurement - S12 Stripline (8 mil core 10 GHz 20 GHz 30 GHz 40 GHz Freq Material #1 0.1 dB 0.1 dB 1.8 dB 1.9 dB 0.4 dB 0.7 dB 0.4 dB 0.9 dB Material #2 (gp) sso-Material #3 0.1 dB 0.1 dB 0.2 dB 0.3 dB -10 0.1 dB 0.6 dB 0.3 dB 1.3 dB Average -15 20 Frequency (GHz) 40 3/2013 High Frequency PCB Material Characterization and Simulation 18

Session 4

Bring it to the Board (PCB)

19

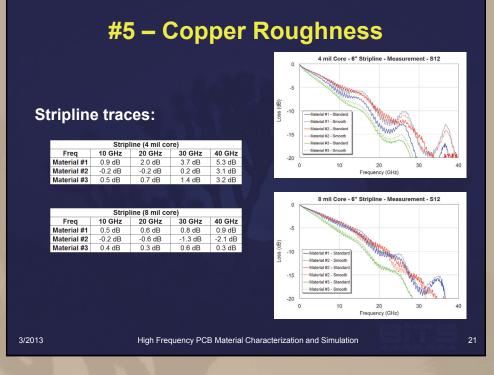
#4 – Board-to-Board Repeatability

- Conclusions (based on 6" trace length):
- Measured board-to-board differences:
 - A few tenths of a dB up to 20 GHz
 - As much as 2 dB up to 40 GHz
- Impact proportional to trace length
 - Expect twice the impact with twice the length

High Frequency PCB Material Characterization and Simulation

- Differences likely caused by variations:
 - Trace width
 - Core thickness
 - Fiberglass weave

3/2013


#5 – Copper Roughness 4 mil Core - 6" Microstrip - Measurement - S12 Three boards of different materials fabricated with -5 standard copper -oss (dB) - Material #1 - Standard -10 Three more fabricated with -Material #2 - Standar -15 Material #2 - Smooth Material #3 - Stand smoother copper rial #3 - Smooth Mate -20 10 20 Frequency (GHz) 30 40 **Microstrip traces:** Microstrip (4 mil core) 8 mil Core - 6" Microstrip - Measurement - S12
 20 GHz
 30 GHz
 40 GHz

 0.2 dB
 0.6 dB
 2.0 dB

 -0.4 dB
 -0.4 dB
 0.8 dB
 Frea 10 GHz Material #1 0.1 dB Material #2 -0.2 dB -5 0.5 dB 0.7 dB 1.6 dB 3.2 dB Material #3 Loss (dB) -10 Material #1 - Smooth Microstrip (8 mil core) Material #2 - Standard Freq 10 GHz 20 GHz 30 GHz 40 GHz -15 Material #2 - Smooth Material #1 0.6 dB 0.1 dB 0.2 dB 1.9 dB erial #3 - Standard Material #2 0.0 dB -0.1 dB -0.3 dB -1.0 dB Material #3 0.5 dB 0.8 dB 1.6 dB 3.2 dB 20 Frequency (GHz) 30 40 3/2013 High Frequency PCB Material Characterization and Simulation

20

#5 – Copper Roughness

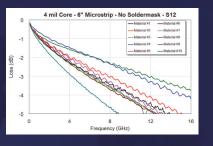
Conclusions (based on 6" trace length):

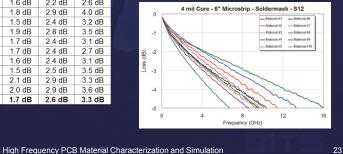
- Measured difference between copper profiles
 - As much as 1 dB up to 20 GHz
 - As much as 3-4 dB up to 40 GHz
- Impact proportional to trace length
- · Measurements only compared two copper profiles
 - Future studies will compare more
- Impact due to copper roughness is presently neither well-defined nor readily modeled
 - Must be better defined and understood in order to accurately predict performance

3/2013

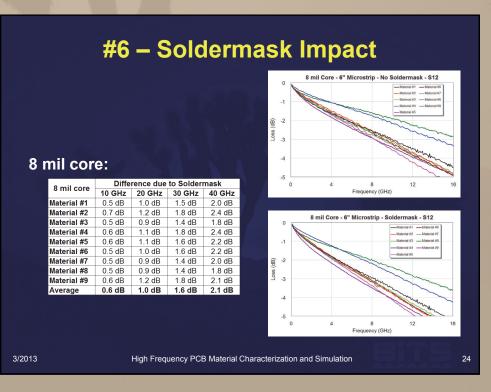
High Frequency PCB Material Characterization and Simulation

22




#6 – Soldermask Impact

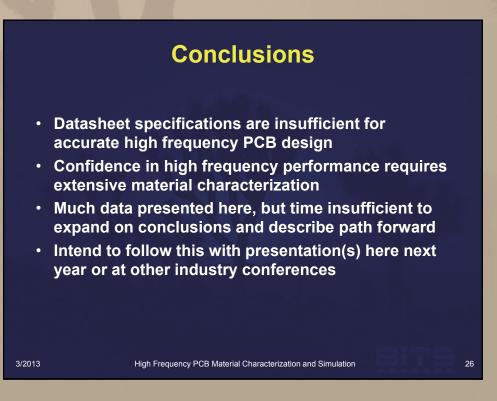
 Boards included identical traces with and without soldermask


4 mil core:

	rence due	to Coldon						
	Difference due to Soldermask							
10 GHz 20 GHz		30 GHz	40 GHz					
0.9 dB	1.6 dB	2.2 dB	2.6 dB					
0.8 dB	1.8 dB	2.9 dB	4.0 dB					
0.8 dB	1.5 dB	2.4 dB	3.2 dB					
1.1 dB	1.9 dB	2.8 dB	3.5 dB					
0.9 dB	1.7 dB	2.4 dB	3.1 dB					
0.9 dB	1.7 dB	2.4 dB	2.7 dB					
1.0 dB	1.6 dB	2.4 dB	3.1 dB					
0.8 dB	1.5 dB	2.5 dB	3.5 dB					
1.3 dB	2.1 dB	2.9 dB	3.3 dB					
1.1 dB	2.0 dB	2.9 dB	3.6 dB					
1.0 dB	1.7 dB	2.6 dB	3.3 dB					
	0.9 dB 0.8 dB 0.8 dB 1.1 dB 0.9 dB 0.9 dB 1.0 dB 0.8 dB 1.3 dB 1.1 dB	0.9 dB 1.6 dB 0.8 dB 1.8 dB 0.8 dB 1.5 dB 1.1 dB 1.9 dB 0.9 dB 1.7 dB 0.9 dB 1.7 dB 0.9 dB 1.7 dB 1.0 dB 1.6 dB 0.8 dB 1.5 dB 1.3 dB 2.1 dB 1.1 dB 2.0 dB	0.9 dB 1.6 dB 2.2 dB 0.8 dB 1.8 dB 2.9 dB 0.8 dB 1.5 dB 2.4 dB 1.1 dB 1.9 dB 2.8 dB 0.9 dB 1.7 dB 2.4 dB 1.0 dB 1.6 dB 2.4 dB 1.3 dB 2.1 dB 2.9 dB 1.3 dB 2.1 dB 2.9 dB 1.1 dB 2.0 dB 2.9 dB					

3/2013

25


#6 – Soldermask Impact

Conclusions (based on 6" trace length):

- Measured impact of soldermask:
 - As much as 1 dB of difference up to 20 GHz
 - As much as 3-4 dB up to 40 GHz
- Impact larger for thinner cores
- Impact proportional to trace length
- Exclusion of soldermask should be considered for critical high-speed paths

High Frequency PCB Material Characterization and Simulation

