

STREAMLINING OPERATIONS

Test operations, generally considered costly, yet necessary, add value to device manufacturing when optimized for efficiency. This session offers a variety of approaches that promise high yields, lean manufacturing, maximized performance at minimal costs, and optimized production times. The first paper discusses a method of incorporating multidimensional Monte Carlo analysis simulation with known design parameters to focus manufacturing improvement efforts and maximize alignment performance while minimizing costs. Presented next is a method for redefining test tooling design rules to gain process margin and prevent substrate chipping caused by test handler misalignment. Zero-cost, software based, virtual tool checkers that bring the whole production area towards a manufacturing LEAN direction is then discussed. Wrapping things up is a paper on a screwless socket and dual pin testing concept said to greatly enhance the robustness and efficiency of IC testing.

Improving Socket Alignment Performance Using Monte Carlo Analysis Techniques and Manufacturing Controls

Daniel DelVecchio, Dustin Allison-Interconnect Devices Incorporated

Tooling Stack-up Process Margin Improvement

Mook Koon Wong, Boon Hor Phee-Intel Malaysia

This Paper

Zero Cost Virtual Tool Checker

Seong Guan Ooi—Intel Technology Sdn. Bhd.

Enablers for Robust & Fast Online Trouble-shooting for High Parallelism Testing

Benedict Loh—Infineon Technologies Kohei Hironaka—NHK Spring Co. Ltd. Michelle Ng—TestPro

COPYRIGHT NOTICE

The paper(s) in this publication comprise the Proceedings of the 2013 BiTS Workshop. The content reflects the opinion of the authors and their respective companies. They are reproduced here as they were presented at the 2013 BiTS Workshop. This version of the papers may differ from the version that was distributed in hardcopy & softcopy form at the 2013 BiTS Workshop. The inclusion of the papers in this publication does not constitute an endorsement by BiTS Workshop, LLC or the workshop's sponsors.

There is NO copyright protection claimed on the presentation content by BiTS Workshop, LLC. (Occasionally a Tutorial and/or TechTalk may be copyrighted by the author). However, each presentation is the work of the authors and their respective companies: as such, it is strongly encouraged that any use reflect proper acknowledgement to the appropriate source. Any questions regarding the use of any materials presented should be directed to the author(s) or their companies.

The BiTS logo and 'Burn-in & Test Strategies Workshop' are trademarks of BiTS Workshop, LLC. All rights reserved.

Zero Cost Virtual Tool Checker

Seong Guan Ooi Intel Technology Sdn Bhd

2013 BiTS Workshop March 3 - 6, 2013

3

Problem Statement

- Challenges in equipment troubleshooting today
 - Reactive Solve problem when problem happen.
 - Time consuming To identify problem root cause in a complex test cell.
 - Unpredictable Lack of real time in-depth test cell health tracking system.
 - System Complexity Problem might consists of tester, handler, load board, docking, pogo pins, socket, etc.
 - Human dependency In-depth test methodology knowledge and troubleshooting experience required.

No standard method to resolve a day to day production issue.

03/2013

Zero Cost Virtual Tool Checker

5

Project Concept & Algorithm

- Theory & Concept
 - Gain, Offset & Time Domain Reflectometry (TDR)

Zero Cost Virtual Tool Checker

E = M\C

- Project Algorithm Overview
- Calibration
 - Type of ATE calibration
 - Calibration file content
 - Calibration file handling
- Statistical Analysis Software (JMP)
- Scheduler email system

03/2013

Theory & Concept Gain - A measure of the ability of a circuit to increase the power or amplitude of a signal from the input to the output, by adding energy to the signal. – Voltage Gain $Gain = 20\log\left(\frac{V_{out}}{V}\right) dB$ Vin Current Gain $I_{Gain} = 20\log$ Tout dB lin Offset - Imbalances of a result signal 03/2013 6 Zero Cost Virtual Tool Checker

Type of ATE Calibration						
	External Reference Calibration	Internal Reference Calibration	Load Board Calibration			
Accessible	User	Test system	Test system			
Calibration Equipment Require	 HP53151A frequency counter HP3458A digital voltmeter (DVM) 	 System reference clock System DC reference board 	Load boardTester			
Purpose	Measure and adjust internal system reference, using traceable external equipment.	Adjust system instrumentation precision via internal standards.	Adjust signal path losses from load board to device under test (DUT) via internal standards.			
Calibration Frequency	Monthly, quarterly, semi-annual or annual	 Loading test program Within a fix time interval based on spec 	 Loading new test program. Condition parameter change 			
03/2013	Zero Co	st Virtual Tool Checker	9			

Load Board Calibration

- Load board calibration
 - Generated by tester while loading test program
 - Compensate channel losses through transmission lines
 - Stored under a specific location at tester workstation for reference purposes

Tester

Load board

Zero Cost Virtual Tool Checker

Calibration files

11

03/2013

Statistical Analysis Software

• JMP was used to perform data analysis on the extracted data which is stored inside data server along with a customized JMP script.

File Edit Tables	Rows Cols DOE Analy	ze Graph	Tools Add-Ins	View Window Help Di				
 ▼rawdata ♥ Source 	Teste 0 1 0 2 0 3 0 3	r TIU_ID 5 TIU301 5 TIU301 5 TIU301 5 TIU301	Channel Parame	ter Gain Offset	TIU_ID Parame	eter=ioh, Tester=p	ogtig05, Channel=	=C0001
Columns (6/0)	○ 4 pgtig00 ○ 5 pgtig01 ○ 6 pgtig02 ○ 7 pgtig03 ○ 7 pgtig04 ○ 7 pgtig04 ○ 9 pgtig04 ○ 9 pgtig04 ○ 10 pgtig04 ○ 11 pgtig05	5 TIU301 5 TIU301 5 TIU301 5 TIU301 5 TIU301 5 TIU301 5 TIU301 5 TIU301 5 TIU301	20 1.0004 20 1.0003 20 20 20 20 20 1.0002 20 1.0002 20 1.0002 20 1.0002 20 1.0004	Perform differer observ	ance (nces /ed	-067	9 ₽10305	0.67
TIU_ID Channel Channel Parameter	12 pgtig03 13 pgtig03 14 pgtig03 Raw da	5 TIU301 5 TIU301 5 TIU301 5 TIU301	20 1 20 1 0.9999	+ + TIU301 ' TIU302 TI	-↔ ' דו⊔303 ' U_ID	TIU305 8	4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	- 2:0
2013			Zero Co	ost Virtual Tool (ysis resi	ults	

Session 1

Project Application

- Applicable to Unix & Windows based ATE which perform load board calibration while loading test program.
- Up to channel level parametric comparison with reference to tester or load board (user defined).
- Simple setup procedures:
 - Develop Unix script for raw data processing
 - Develop data analysis script & determine key parameters for monitoring
 - Setup scheduler email system and share drive access
- Stakeholders receive scheduler email and perform investigation based on outlier triggers – marginal tools.

03/2013

Zero Cost Virtual Tool Checker

18

Session 1

Streamlining Operations

Paper #3 10

Session 1

Streamlining Operations

21

CAL_VERSION: 11			_				
CAL_INFO:		_					
HSD Calibration Parameters			ŢĹ				
resthead: 1 Target Lines: Range: 0 m_Clk_alt: m_Clk: 0 m_Clk_alt: cals_enabled: ffffffff debug_flags: 00000000	close						
sli_dac_min: 0 sli_dac_max: 16383 sync_ig: 5123123 autoload: Temperature_mf:	a 🗸	Tester	TIU_ID	Channel	Parameter	Gain	Offset
	0 1	pgtig05	TIU301	C0001	vol	0.99496	0.017761
Temperature_th: 0 0 0 0 0 0	0 2	pgtig05	TIU301	C0001	voh	0.99603	0.011202
Target_line:1	0 3	pgtig05	TIU301	C0001	iol	1.006	0.00013925
Target 50	0 4	pgtig05	TIU301	C0001	ioh	0.99995	0.00032654
R1S1ng 0 Falling 0	O 5	pgtig05	TIU301	C0001	vil	1.0043	-0.027669
SCM 0	0 6	pgtig05	TIU301	C0001	vih	1.0039	-0.022194
Shorted Cal 0 Diffmode NOT_SPECIFIED	0 7	pgtig05	TIU301	C0002	vol	0.99576	0.0076058
rcvload_cal NOT_SPECIFIED	0 8	pgtig05	TIU301	C0002	voh	0.99536	0.013923
cal_type NOI_SPECIFIED cal_pat 99	O 9	pgtig05	TIU301	C0002	iol	1.0031	0.00026961
target_fall 99	O 10	pgtig05	TIU301	C0002	ioh	0.99934	0.00026297
dut_voh 99	O 11	pgtig05	TIU301	C0002	vil	1.0048	-0.030337
dut_voi 99 dut_rise_time 99 dut_fill_time 90	O 12	pgtig05	TIU301	C0002	vih	1.0041	-0.021741
dut tenning dut tenn yet encoreter	0 13	pgtig05	TIU301	C0003	vol	0.99516	0.0015038
	0 14	pgtig05	TIU301	C0003	voh	0.99508	0.016096
Pow colibration file	O 15	pgtig05	TIU301	C0003	iol	1.0069	8.67E-05
Raw calibration life	O 16	pgtig05	TIU301	C0003	ioh	0.999	8.00E-05
converted to IMP readable	0 17	pgtig05	TIU301	C0003	vil	1.0033	-0.030718
	0 18	pgtig05	TIU301	C0003	vih	1.0046	-0.02113
files in order to proceed for	0 19	pgtig05	TIU301	C0004	vol	0.9946	-0.0031533
	0 20	pgtig05	TIU301	C0004	voh	0.99623	0.0046459
data analysis	0 21	pgtig05	TIU301	C0004	iol	1.0073	1.04E-05
	0 22	pgtig05	TIU301	C0004	ioh	1.0002	0.00012133
	0 23	pgtig05	TIU301	C0004	vil	1.0042	-0.027624
	0 24	pgtig05	TIU301	C0004	vih	1.0045	-0.023434

Data Processir

Graphical Analysis Result

1). Detect channel performance differences between load boards.

Project Summary

- Implementation of project is FAST & SIMPLE.
- Applicable to both Unix and Windows based ATE.
- Project Advantages:
 - Simplify data analysis task by using scheduler auto-scripts
 - Real time marginal tools monitoring
 - Detect marginal tools performance with reference to analyzed data
 - Detect load board design issue via TDR calibration data
 - Improve overall tool stability through early problem detection
- Improvement areas based on pilot assessment:
 - 15% unscheduled downtime improvement
 - 0.5% product yield improvement

03/2013

Zero Cost Virtual Tool Checker

27

