

ARCHIVE 2012

DESIGNING FOR PERFORMANCE

It just wouldn't be a BiTS Workshop without a session devoted entirely to novel socket designs. Every year, there are new devices on the market and ever critical factors like witness marks on smaller solder balls and minimum contact force that need a socket designed specifically for them. The three papers in this session address three distinctly different socket applications. The first talks to spring probes for fine pitch, then the second paper reviews the heat path for a device mounted in a socket and discusses the important variables in a thermal analysis. Lastly, we'll examine a unique design for a coaxial socket.

Are Spring Contact Probes Valid at Fine Pitch?

Jon Diller, Dr. Jiachun (Frank) Zhou—Interconnect Devices, Inc.

Evaluation and Optimization of the Thermal Performance of a Socketed Device for an HTOL Application

Nathanaël Loiseau—Presto Engineering Marco Michi, Dr. James Forster—Wells-CTI

Wall-extended Coaxial Socket

Collins Sun, Justin Liu, Jack Liang—WinWay Technology Co., Ltd. Kuan-Chung Lu, Tzyy-Sheng Horng—National Sun Yat-Sen University

COPYRIGHT NOTICE

The papers in this publication comprise the Proceedings of the 2012 BiTS Workshop. They reflect the authors' opinions and are reproduced here as they were presented at the 2012 BiTS Workshop. This version of the papers may differ from the version that was distributed in hardcopy & softcopy form at the 2012 BiTS Workshop. The inclusion of the papers in this publication does not constitute an endorsement by the BiTS Workshop, the sponsors, BiTS Workshop LLC, or the authors.

There is NO copyright protection claimed by this publication (occasionally a Tutorial and/or TechTalk may be copyrighted by the author). However, each presentation is the work of the authors and their respective companies: as such, it is strongly encouraged that any use reflect proper acknowledgement to the appropriate source. Any questions regarding the use of any materials presented should be directed to the author/s or their companies.

Dr. Jiachun (Frank) Zhou, Jon Diller Interconnect Devices, Inc.

2012 BiTS Workshop March 4 - 7, 2012

Paper #1 1

Paper #1 2

Designing for Performance

Paper #1 3

Designing for Performance

<section-header><section-header><section-header><section-header><section-header><section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item>

Paper #1 4

Designing for Performance

Paper #1 5

Designing for Performance

Paper #1 6

Designing for Performance

Paper #1 7

15

Summary

Spring contact probes are a preferred technology for ≧0.4mm pitch but are challenged at finer pitches.

By embedding the probe barrel in the contactor body significant gains can be made in robustness, alignment, and signal integrity

This approach has potential for all WLCSP pitches: 250 μm, 200 μm, 180 μm, 150 μm

3/2012

Are Spring Contact Probes Valid at Fine Pitch?

<section-header><text><text><text><page-footer><page-footer>

Paper #1 8

Designing for Performance

Evaluation and Optimization of the Thermal Performance of a Socketed Device for an HTOL Application

Considerations in the selection of a socket for a plastic molded, thermal enhanced package

Nathanaël Loiseau+, Marco Michi* and Dr. James Forster* + Presto Engineering, * WELLS-CTI

2012 BiTS Workshop March 4 - 7, 2012

Paper #2 1

Designing for Performance

Content

- Technology challenge
- Environment challenge
- Thermal resistance definition
- DUT impact
- PCB impact
- Chamber impact
- Self heating impact
- Socket impact (DOE)
- Conclusion

Definition: HTOL <u>High Temperature Operating Life</u> Typically 1000 hours at T_{ambient} 125°C or T_{junction} 150°C. But other times and temps are performed

03/2012

Evaluation and Optimization of the Thermal Performance of a Socketed Device for an HTOL Application

Paper #2 2

Designing for Performance

Environment Challenge					
	Principle for HTOL				
	T _{junction} DUT = Ta + Rja x P _{DISS}				
Chamber « Ta »	• Ta is regulated locally or globally in order to have the correct T _{junction} DUT				
T _{board} T _{socket}	 I a must be compatible with Other elements temperature (board, socket, 				
	Chamber specification				
	(ex: Ta _{min} = Troom + 30°C if no cooling capability)				
03/2012	Evaluation and Optimization of the Thermal Performance 5 of a Socketed Device for an HTOL Application 5				

Paper #2 3

Designing for Performance

Thermal resistance is

- The characterization of heat transfer between 2 points
- The key point to get thermal equilibrium and Tj under control
 → functionality & reliability of the IC

Thermal resistance is not

- A universal standard
 JESD 51 → 17 documents
 - MIL-STD-750E →13 methods
- equilibrium and Tj under control A standard value available in IC data → functionality & reliability of the sheet or package specification

Thermal Resistance Definition Soldered device vs Socketed device Thermal resistance is typically given in device datasheet for the device soldered to a board in a certain environment Thermal resistance of a socketed device is expected to be higher than one soldered to a PCB in same environment. Mostly unknown. Heat dissipation path: Die – Case – Ambient Die - IC Pads - Board - Ambient Heat dissipation path: Die – Case – Socket – Ambient • Die - IC Pads - Socket - Board - Ambient Evaluation and Optimization of the Thermal Performance 03/2012 of a Socketed Device for an HTOL Application

Paper #2 4

Designing for Performance

Paper #2 5

DUT Impact								
Die assembly								
Stacked dies + Wire bonding Stacked dies + Flip-chip								
Die / lid ratio								
Zinm	Measure same HT	done on 2 OL board, o	socketed de difference or	evice (same n die size or	package, nly)			
	Device	Package	Die pad	Die	Rja			
	А	7v7mm	E 1vE 1 mm	2.7x2.5mm	31°C/W			
	В	/ X / IIIII	5.1X5.1 IIIII	3.3x2.5mm	22°C/W			
B 3.3x2.5mm 22°C/W Chip designer choices → Rjc, Rjs, Rjp Often unknown values when designing an HTOL setup 03/2012 Evaluation and Optimization of the Thermal Performance of a Socketed Device for an HTOL Application 11								

Example of Rja HVQFN56 soldered on application boards in same environment							
Appl	ication boa	rd #1	Appli	ication boa	rd #2		
PCB thickness (mm)	Nbr of layer	PCB size (mm)	PCB thickness (mm)	Nbr of layer	PCB size (mm)		
1.17	10	30x60	1.43	10	35x80		
Rja = 36.4 °C/W Rja = 31.6 °C/W							

03/2012

Evaluation and Optimization of the Thermal Performance of a Socketed Device for an HTOL Application

12

	Chamber Impact
	From previous BiTS presentations, HTOL chamber often seen like:
+	 A simple box A "tunnel" between BIB's "Fresh" air at one side Inconsistent air flow between boards Extraction of heat capability
	 For HTOL, JESD22-A108D: The environmental chamber shall be capable of maintaining the specified temperature within a tolerance of ± 5 °C throughout the chamber while parts are loaded and unpowered.
1.00	 For test cost reduction, most often: Maximize the number of BIB's in chamber
03/2012	Maximize the number of site per BIB Evaluation and Optimization of the Thermal Performance of a Seducted Device for an UTOL Application

5 2012

Burn-in & Test Strategies Workshop

Paper #2 7

Paper #2 8

Socket Impact							
DOE in order to evaluate impact of socket design on global Rja							
 DUT Vehicle : Thermal enhanced HVQFN56 8x8mm Laminate based 1.3W dissipation Always the same IC used 	 Socket Vehicle : Clamshell, Surface mount 10 different thermal designs 						
 Board Vehicle : HTOL board 540x245mm, Full application mode simulated (800MHz signals in), 16 sites available 1 site loaded (always the same) 	 HTOL chamber Vehicle : 16 BIB position available, Board vehicle always loaded in same position Measure of Tj / Rja at minimum 3 temperatures (only 1 reported in this document) 						

Designing for Performance

Paper #2 10

Designing for Performance

	Socket Impact									
So	Socket / pin variations (1)									
Socket Id	Socket reference	Socket decription	What do we want to evaluate ?	1	Result 2	s that 3	will b	e con 5	npared 6	7
А	717P05608-500-A0-01	56 P-pin + 9 P-pin for the die pad	Reference							
в	717P05608-500-A0-02	56 S-pin + 9 P-pin for the die pad	Impact of a different signal pin type							
с	717P05608-500-A0-03	56 S-pin + 36 P-pin for the die pad	Impact of the pad pin number on the die pad							
D	717-05608-500-A0-04	56 S-pin + 81 S-pin for the die pad	Impact of a different pin for both signal & die pads							
E	717P05608-500-A0-05	56 P-pin + Thermal button for the die pad	Impact of a different pin structure for the die pad							
F	717P05608-500-A0-06	56 P-pin + 9 P-pin + BART	Impact of an heatsink with still die pad contacts							
G	717P05608-500-A0-07	56 P-pin + 1 P-pin + BART	Can heatsink replace the die pad path ?							
н	717Z05608-500-A0-08	56 Z-pin + 9 Z-pin for the die pad	Impact of a different pin for both signal & die pads							
1	716P05608-500-A0-09	56 S-pin + 9 P-pin for the die pad	Impact of an open top socket vs a clam shell socket							
J	717P05608-500-A0-10	56 P-pin + Thermal button for the die pad + BART	Cumulative impact of structure for die pad + heatsink							
	03/2012	Evaluation and Optimiz of a Socketed De	zation of the Thermal Perform	nanc	e			:	21	

Paper #2 12

Socket Impact Integrated heatsink							
 Even though thermally enhanced package is designed to dissipate heat through the 	Socket Id	Socket reference	Socket decription				
thermal pad on the bottom, adding a	Α	717P05608-500-A0-01	+9P-pin for the die pad				
heatsink improve Rjca thus global Rja	F	717P05608-500-A0-06	56 P-pin + 9 P-pin + BART				
This is confirmed by simulation and actual	G	717P05608-500-A0-07	56 P-pin + 1 P-pin + BART				
A simulation A measure F simulation F measure G simulation G measure - F simulation G measure - G measure	1,2	1.4	n Heatsink				
03/2012 Evaluation and Optimization of the Th of a Socketed Device for an HT	nermal F OL Appl	Performance ication	28				

		So	cke	t Im	pact
Socke Id	t Socket reference	Socket decription	Thermal simulation	Ranking measure	Simulation ranking
A	717P05608-500-A0-01	56 P-pin + 9 P-pin for the die pad	6	6	
в	717P05608-500-A0-02	56 S-pin + 9 P-pin for the die pad	9	9	
с	717P05608-500-A0-03	56 S-pin + 36 P-pin for the die pad	7	7	ي 180 H — Ă H
D	717-05608-500-A0-04	56 S-pin + 81 S-pin for the die pad	8	8	
E	717P05608-500-A0-05	56 P-pin + Thermal button for the die pad	2	5	
F	717P05608-500-A0-06	56 P-pin + 9 P-pin + BART	3	2	
G	717P05608-500-A0-07	56 P-pin + 1 P-pin + BART	4	3	120
н	717Z05608-500-A0-08	56 Z- pin + 9 Z-pin for the die pad	5	4	100
1	716P05608-500-A0-09	56 S-pin + 9 P-pin for the die pad	9	10	
L L	717P05608-500-A0-10	56 P-pin + Thermal button for the die pad + BART	1	1	Related to Device Power, W
	Sc	ocket therm	al des	sign -	→ Rsb, Rpb, Rca
	03/2012	Evaluation and C of a Socket	Optimization ed Device	on of the ⁻ e for an H	Thermal Performance 30 TOL Application

Paper #2 15

Designing for Performance

Paper #3 1

Paper #3 2

Designing for Performance

li	ntroduction (to wall-ext	ended co	axial socket					
Perform	Performance comparison								
Test con	(3) (3) (3) (3) (3) (3) (4) (4) (4) (5) (4) (4) (14) (14) (14) (15) (14) (14)		-10 -10 -10 -10 -10 -10 -10 -10	BGND +GND GSG GSG Freq [GHz]					
		Coaxial socket	Wall-extended	Improvement (%)					
	Metal coverage (%)	63	78	23					
No. No.	Pin arrangement	Bandwid	th (GHz)	Improvement (%)					
	8GND	15.91	24.66	55.00					
	+Gnd	17.46	23.53	34.77					
	GSG	8.18	11.1	35.70					
	SG	4.63	6.2	33.91					
3/2	012	Wall-extended C	oaxial Socket	6					

Paper #3 3

Paper #3 4

Designing for Performance

Paper #3 6

Designing for Performance

Paper #3 7

Designing for Performance

Socket test performance Insertion loss comparison								
	Plastic soc	ket Wall-ex	tended coaxial socket					
GSG Ratio of 1:2 (signal to ground probes) GS Ratio of 1:1 (signal to ground probes)	2 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		8000 15 10 15 20 25 50 25 40 Freq[GHz]					
5 m	Plastic socket	Wall-extended coaxial socket	Improvement					
Pin arrangemen	t Bandwie	dth (GHz)	(70)					
GSG	5.91	11.1	87.82					
SG	2.66	6.2	133.08					
3/2012	Wall-extended	Coaxial Socket	18					

Paper #3 9

Paper #3 10

Designing for Performance

3/2012

Session 5

Designing for Performance

23

Summary

 Wall-extended coaxial design could effectively improve the RF performance compared with ordinary coaxial design and plastic socket.

•The highly customized techniques were necessary to meet the various application.

Wall-extended Coaxial Socket

<section-header><section-header><text><page-footer><page-footer>

Paper #3 12