

Session 7

ARCHIVE 2010

INNOVATIVE SOCKET INGREDIENTS

Thermal Characterization Issues and Potential Techniques for Test

Ashish Gupta, Rafael Quintanilla, Jaime A. Sanchez, James C. Shipley —Intel Corporation

Using Clad Alloys to Make High Temperature Burn in and Test Sockets

Jimmy L. Johnson, Robert Bertin-Brush Wellman Inc.

COPYRIGHT NOTICE

The papers in this publication comprise the proceedings of the 2010 BiTS Workshop. They reflect the authors' opinions and are reproduced as presented , without change. Their inclusion in this publication does not constitute an endorsement by the BiTS Workshop, the sponsors, BiTS Workshop LLC, or the authors.

There is NO copyright protection claimed by this publication or the authors. However, each presentation is the work of the authors and their respective companies: as such, it is strongly suggested that any use reflect proper acknowledgement to the appropriate source. Any questions regarding the use of any materials presented should be directed to the author/s or their companies.

All photographs in this archive are copyrighted by BiTS Workshop LLC. The BiTS logo and 'Burn-in & Test Socket Workshop' are trademarks of BiTS Workshop LLC.

Thermal Characterization Issues and Potential Techniques for Test

Ashish Gupta

Rafael Quintanilla, Jaime A. Sanchez, James C. Shipley

Intel Corporation

2010 BiTS Workshop March 7 - 10, 2010

Agenda

- Importance of Thermals in Test
- Assembling the Thermal System Puzzle
- Automatic Temperature Control
- Optimization Need and Findings
- Summary

3/2010

Thermal Characterization Issues and Potential Techniques for Test

- Thermals at test
 - Critical parameter at all Tests
 - Product specification compliance
 - Yield ↔ Revenue
- Test Challenges by Navid Shahriari (Intel Director of STTD, Distinguished Speaker – BiTS 2009)
 - Silicon Scaling results in higher thermal density
 - Bare die brings major thermal control challenges: Fast Transients and Spatial Uniformity
 - Better Test thermal interface materials are needed

3/2010 Thermal Characterization Issues and Potential Techniques for Test

• Understand control expectations – Power and Temperature

Summary

- Thermal Characterization
 - What is present? → Max power removal
 - What is missing? → Transient and Control
- Automatic Temperature Control
 - Product requirement and setpoint range (hot & cold)
 - Understand and Optimize in Transient Domain
 - Robust against system input change / variability
- Thermal Interface Materials
 - Bottleneck during Optimization
 - Improvement in characterization needed for Test

Need to start assessing the "Entire" Thermal System in a Transient Domain

3/2010

Thermal Characterization Issues and Potential Techniques for Test

Using Clad Alloys to Make High

Temperature Burn in and Test Sockets

Jim Johnson and Robert Bertin **Brush Wellman Alloy Products**

2010 BiTS Workshop March 7 - 10, 2010

Session 7

Presentation Outline

- Research driving forces
- BEM HPAs used in BiTS applications and their properties
- Mathematical determination of clad metal composite properties
- Cladding process
- Clad metal performance and property evaluation
- Conclusions
- Next steps

03/2010 Using Clad Alloys to Make High Temperature Burn in and Test Sockets

2

Research Driving Forces

- 2009 BiTS Workshop
- Processor higher pin count
- Finer pitch
- Lower package profiles
- Higher current density
- Higher ambient temperatures during burn-in

03/2010 Using Clad Alloys to Make High Temperature Burn in and Test Sockets

Research Driving Forces									
Туре	Feature	Metric	2003	2005	2007	2009	2014	2019	Barrier
	Packages Types SO, LGA, BGA, mBGA, QFN, DFN, CSP, etc.								
	Contact Matl.	Alloy		Cu Al	oy [brass,	BeCu]		Same/New	None
Test	Max. # Contacts	#	1,000	1,000	2,000	3,000	5,000	10,000	10,000
Sockets	Max. # Cavities	#	1	1	2	4	8	16	64
	Min. Pitch	mm	0.65	0.4	0.3	0.3	0.25	0.2	100mm
	Max. Edge Rate	GHz	3	6	12	24	40	> 10Gbps	20Gbps
	Inductance	nH	1	1	0.4	0.3	0.2	0.1	0.1
	Contact Matl.	Alloy		Cı	Alloy [Be	Cu]		Same/New	None
	Max # Contacts	#	1,000	5,000	10,000	10,000	10,000	10,000	Pkg Size
Burn-In	Max. # Cavities	#	16	32	32	64	64	64	64
Sockets	Min. Pitch	mm	1	0.8	0.65	0.5	0.3	<u><</u> 0.3mm	0.2
	Max. Temp.	°C	150	150	150	175	250	250	250
	Housing	Material		T	hermoplas	tic		250°C	250
.03	Source: Bishop & Associates Inc., Post Recession Outlook Electronics Industry and Connector Road Map 2009-2019 03/2010 Using Clad Alloys to Make High Temperature Burn in and Test Sockets 4								
03/2010 Using Clad Alloys to Make High Temperature Burn in and Test Sockets 4									

Session 7

BEM HPAs Commonly Used in BiTS Applications and Their Properties										
Allov	2% Offset Yield Strength	Modulus of Elasticity	Electrical Conductivity	trical 1000 Hr Stress Relaxation *Formabilit						
~ v j	ksi (MPa)	Mpsi(GPa)	%IACS	100C	150C	200C	Long	Trans		
	165-205	19								
25 HT	(1130-1420)	(131)	22-28	95	87	55	2.0	0.7		
	135-153	20								
390 HT	(930-1055)	(138)	44 min	96	84	68	2.0	2.0		
	138 min	20								
390E EHT	(951 min)	(138)	42 min	96	84	68	2.0	2.5		
	95-120 20									
3 HT	650-870	(138)	48-60	96	85	66	1.0	1.0		
		28-30								
360 HT 230 min (195-210) 6 min 100 100 100 0.8 1.5										
* Note: Formability at thickness = 0.1 mm, Alloys 25 and 360 formability rating prior to heat treating 03/2010 Using Clad Alloys to Make High Temperature Burn in and Test Sockets 6										

BEM HPAs Commonly Used in BiTS Applications and Their Properties										
 Alloy 360 has excellent stress relaxation resistance, has good formability, and very high strength, but the electrical conductivity is poor 										
Alloy	2% Offset Modulus of Electrical !000Hr Stress Relaxation *Formability Viloy Yield Strength Elasticity Conductivity Resistance (% stress remaining) 90° Bend R/t ksi (MPa) Mpsi(GPa) %IACS 100C 150C 200C Long Trans									
860 HT * Note: I	230 min Formability at thick	28-30 (195-210) ness = 0.1 mm,	<mark>6 min</mark> Alloys 25 and	100 360 formal	100 bility rating	100 prior to heat	0.8 treating	1.5		

Mathematical Determination of Clad Metal Composite Properties

- If we could clad a higher conductivity alloy with Alloy 360 would the hybrid material provide a unique combination of properties?
- The properties of hybrid alloys can be predicted using simple equations, but first a decision regarding which alloys to use must be made.

03/2010 Using Clad Alloys to Make High Temperature Burn in and Test Sockets

8

Mathematical Determination of Clad Metal Composite Properties

	Material	Modulus	Fraction of	Yield Strength	Conductivity	Resistivity	
		(Mpsi)	X-Section (%)	(ksi)	(%IACS)	Ohm-in	
Top Layer	3	20.0	20%	110	45	1.509E-06	
Middle Layer	360	30.0	60%	188	6	1.132E-05	
Bottom Layer	3	20.0	20%	110	45	1.509E-06	
Composite		26.0	100%	157	21.6	3.14E-06	
03/2010 Using Clad Alloys to Make High Temperature Burn in and Test Sockets 11							

13

- Sample A, was rolled to a final composite thickness of 0.004"
- Sample B, was rolled to a final composite thickness of 0.010"
- Both samples were given to customers for evaluation. Only part of the testing was completed in time for paper submission deadline.

03/2010 Using Clad Alloys to Make High Temperature Burn in and Test Sockets

Innovative Socket Ingredients

Clad Metal Performance & Property Evaluation									
Hardness Distribution in HK @ 25 gm load									
Sample	As Rec - T	1000Hr	' - L 1	1000 - T					
Alloy 3	248.9	215.	8	212.6					
Interface	257.0	233.	8	395.2					
Ni Near Interface	592.6	514.2	522.	1	522.1				
Mid NiStrip	555.7	502.7	530.	2	573.7				
extra pokes Alloy 3		257.0			192.3				
extra pokes Alloy 3		232.6			155.6				
extra pokes Alloy 3		254.3			210.5				
			F 136°be opposi	wween le faces Vickers Hard	ness				
		Alloy	Sample A	Sample B	Peak H.T.				
		3	271	249	216-287				
		360	477	529	395-695				
03/2010 Using C	03/2010 Using Clad Alloys to Make High Temperature Burn in and Test Sockets 19								

23

Conclusions

- Mathematical predictions of clad metal properties correlated well with the empirically measured properties
- Clad metal can withstand extremely high temperatures
- Clad metal electrical conductivity similar to CuBe Alloy 25
- Clad metal formability is excellent in both rolled tempered and mill hardened conditions

03/2010 Using Clad Alloys to Make High Temperature Burn in and Test Sockets

