

ARCHIVE 2010

TEST AND BURN-IN OPERATIONAL CONSIDERATIONS

Test Flow and Handling of WLCSP Devices Have Significant Impact on Cost

Bob Jemison—RJI Technical Sales

Your Requirements Please!

Hideyuki Takahashi—Sensata Technologies Japan Hide Furukawa—Sensata Technologies Inc.

Socket Cleaning With Laser

Dr. J. M. Lee, J.S. Choi—IMT Ltd. S. K. Park—OKins Electronics, Co. Ltd.

An Environmentally Responsible Test During Burn-In System Design

Bill Barraclough, Don Richmond—Aehr Test Systems

COPYRIGHT NOTICE

The papers in this publication comprise the proceedings of the 2010 BiTS Workshop. They reflect the authors' opinions and are reproduced as presented , without change. Their inclusion in this publication does not constitute an endorsement by the BiTS Workshop, the sponsors, BiTS Workshop LLC, or the authors.

There is NO copyright protection claimed by this publication or the authors. However, each presentation is the work of the authors and their respective companies: as such, it is strongly suggested that any use reflect proper acknowledgement to the appropriate source. Any questions regarding the use of any materials presented should be directed to the author/s or their companies.

All photographs in this archive are copyrighted by BiTS Workshop LLC. The BiTS logo and 'Burn-in & Test Socket Workshop' are trademarks of BiTS Workshop LLC.

Test and Burn-in Operational Considerations

Test Flow and Handling of WLCSP Devices Have Significant Impact on Cost

Bob Jemison, RJI Technical Sales

2010 BiTS Workshop March 7-10, 2010

Our Challenge Today

"What can I do to lower the cost of testing my company's WLCSP product? "

WLCSP is here!

3/2010 Test Flow and Handling of WLCSP Devices Have Significant Impact on Cost

Test and Burn-in Operational Considerations

<section-header><section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item>

Test and Burn-in Operational Considerations

Test and Burn-in Operational Considerations

	C	ost of Tes	<mark>t</mark>
	Is made u	p of many co	omponents
	Capital	Operating	Device
	Expense	Expense	Throughput
	 Equipment Upgrades Options Economic Life 	 Labor Floor space Factory integration Service & support 	 Effective UPH Downtime Utilization
3/	/2010 Test Flow and Handl	ing of WLCSP Devices Have Sigr	nificant Impact on Cost 8

Test and Burn-in Operational Considerations

Test and Burn-in Operational Considerations

Returns Complicate Matters Return flow for traditional product Finished Goods Wafer Assembly **Final Test** Probe ATE ATE · Wafer Saw · Device Interface Sort Test Boards • **Returned Product** Probe Cards Die attach Test Sockets • Probe Stations Device Handlers • Wire Bond Encapsulation Trim & Form Inspection Test Flow and Handling of WLCSP Devices Have Significant Impact on Cost 3/2010

Test and Burn-in Operational Considerations

What Have We Learned

If we want to cut costs we need to ...

- Reduce the equipment needed for test
- Shrink the size to save floor space
- Reduce the number of operators needed
- Accommodate the parts flows that are required for these new WLCSP products

3/2010 Test Flow and Handling of WLCSP Devices Have Significant Impact on Cost 13

Consideration	Traditional	New Process
Capital Equip	3 – 6 Machines	1 machine
Work Flow	3 - 6 Steps	1 combined step
JIT Benefits	Multi-step process	Simplified process
	Long cycle time	Shorter cycle time
	High cost of inventory	Low cost of inventory
	Traceability burden	Single station
Staffing	Multi-machines to train	Single machine to train
Returns Processing	Complicated non-std	Simple de-tape to tape
Qual/Engineering	Complicated non-std	Simple tray to tray
Development Tasks	Non-correlated	Correlates to production

Test and Burn-in Operational Considerations

Test and Burn-in Operational Considerations

Your Requirements Please!

Hideyuki Takahashi, Japan Engineering Mgr Hide Furukawa, US Engineering Mgr

> Sensata Technologies Inc. Japan / Attleboro, MA

2010 BiTS Workshop March 7 - 10, 2010

Test and Burn-in Operational Considerations

Test and Burn-in Operational Considerations

Test and Burn-in Operational Considerations

	Contact Photos	;
Initial	50K	100K
State Particip		
No Contac	t Breaking with 10	0K cycling
Not much s	Solder accumulation	on

Test and Burn-in Operational Considerations

Test and Burn-in Operational Considerations

Test and Burn-in Operational Considerations

Test and Burn-in Operational Considerations

Rocky J.M.Lee & J.S.Choi IMT Ltd.

S.K.Park Okins Electronics Co. Ltd

2010 BiTS Workshop March 7 - 10, 2010

Test and Burn-in Operational Considerations

Test and Burn-in Operational Considerations

Laser Cleaning Results: Logic Sockets

Target of Test Socket Cleaning

: To remove Tin(Sn) based contamination from pogo-pin surface

3/2010

After cleaning

9

Test and Burn-in Operational Considerations

Test and Burn-in Operational Considerations

Test and Burn-in Operational Considerations

Test and Burn-in Operational Considerations

		#06 => ML	F10x10_6	4LD (Pogo)			
Before LC	Total: 2,5	Total: 2,572 Unit		After LC	Total: 3,896 Unit		
Good	(BIN1) 2,314	90%		Good	(BIN1) 3,752	96.3%	
Reject	(BIN5) 167	6.5%		Reject	(BIN5) 128	3.3%	
	(BIN6) 13	0.5%			(BIN6) 13	0.3%	
	(BIN5) 8	0.3%			(BIN5) 9	0.2%	
		#11 =>	BGA 13x1	3 (Pogo)			
Before LC	Total: 1,4		After LC	Total: 3,104 Unit			
Good	(BIN1) 1,265	84.6%		Good	(BIN1) 2,809	90.5%	
Reject	(BIN3) 42	2.8%		Reject	(BIN3) 50	1.6%	
	(BIN5) 19	1.3%			(BIN5) 25	0.8%	
	(BIN6) 97	6.5%			(BIN6) 109	3.5%	
	(BIN7) 81	5.4%			(BIN7) 118	3.8%	

Test and Burn-in Operational Considerations

Test and Burn-in Operational Considerations

Test and Burn-in Operational Considerations

Test and Burn-in Operational Considerations

Socket Test & Cleaning System

- Automatic Socket Test & Cleaning System
- 1. Automatic laser cleaning of pins
- 2. Automatic pin quality test (Cres, Force, Displacement)
- ♦ Benefits
- 1. Significant Pin Cost Saving
 - : For fine pitch & expensive pins
- 2. Easy Socket Maintenance
 - : Fully Automatic handling for operators

3/2010

Cres & Spring Force T	est	Res	ult						
1 5				Bloc	k 1				
		Be	efore clea	ning		A	fter clean	ing	
• Silling • Oli Fin Change •	Pin No.	Position	Pressure	Resistanc e		Position	Pressure	Resistanc e	
(Brownen The	28	0.41	14.8	183.49		0.41	14.9	156.91	
and the second se	29	0.41	14.7	1.00E+10	RF	0.41	14.8	356.26	RF
#3	30	0.41	14.8	1059.97	RF	0.41	14.5	165.25	
e	31	0.41	14.9	1.00E+10	RF	0.41	14.5	432.81	RF
	32	0.41	14.8	1.00E+10	RF	0.41	14.8	109.25	
· same masses ·	33	0.41	14.8	1.00E+10	RF	0.41	14.1	594.26	RF
w Mr. chan	34	0.41	14.5	794.91	RF	0.41	14.7	429.19	RF
	35	0.41	14.3	422.58	RF	0.41	14.7	104.23	
Cpen Save 2022-Pent Initialize 2007-09-21	36	0.41	14.7	1.00E+10	RF	0.41	14.2	194.25	
	37	0.41	14.9	1.00E+10	RF	0.41	13.9	350.6	RF
The second	38	0.41	14.6	480.2	RF	0.41	15.5	147.56	
The second	39	0.41	14.3	1.00E+09	RF	0.41	14.6	156.54	
Start and an analysis of the second s	40	0.41	14.5	734.30	ĸr	0.41	14.2	149.30	
	41	0.41	14.9	200.00		0.41	13.2	146.29	
	42	0.41	14.5	1844.6	DE	0.41	16.2	146.28	-
	43	0.41	15.2	1 00F+10	RE	0.41	15.2	197.25	
	45	0.41	14.6	760.64	RF	0.41	15.5	193.27	
	46	0.41	14.7	451.51	RF	0.41	15.3	158.89	
	47	0.41	13.8	299.78		0.41	13.3	147.52	
	48	0.41	14.1	421.56	RF	0.41	12.9	198.26	
Operate Clean& System Span Hap MAINT- Descrit State	49	0.41	14.3	221.01		0.41	13.9	185.39	
Setting Measure Setting S EDIY SENANCE SHEADIN S EAN	50	0.41	14.3	218.05		0.41	13.3	193.49	
	51	0.41	13	2855.3	RF	0.41	13.2	149.67	
*Red: Fail, Spec Out	*** 1	3 out o	of 18	failed	p	ins pa	ssed	after	
Biue. Pine, Spec in	lase	r clea	ning.	(Rec	ov	ery R	ate =	72%)	
3/2010 Socket 0	Cleanin	g with La	aser					27	

	sions – Laser cleaning can	
le imb	rove the pin contact quality without any damag	je
1. C	ontact resistance reduction: ~ 50%	
2. S Rub	uitable for most socket types (BGA, SOP, QG ber / elastomeric…)	Ν,
• Ve	rify test socket performance	
1.	Test New socket (pins) quality (incoming inspe	ection)
2. coi	Extend the socket life by cleaning and recyclin ntact pins.	ng the
•	Enhance the test Yield	
	I. Yield Improvement: as much as 5%	
	2. Reduction in system downtime	
3/2010	Socket Cleaning with Laser	28

Test and Burn-in Operational Considerations

Test and Burn-in Operational Considerations

Test and Burn-in Operational Considerations

Test and Burn-in Operational Considerations

An Environmentally Responsible Test During Burn-In System Design

Bill Barraclough Don Richmond Aehr Test Systems

2010 BiTS Workshop March 7 - 10, 2010

The Challenge:

We are all challenged, in our personal and professional lives, to reduce costs AND be environmentally responsible.

Related to semiconductor test equipment: is it practical to both reduce costs AND be environmentally responsible?

The answer can be YES! Specific examples where equipment

designers & users can reduce cost AND be environmentally responsible are provided.

3/2010 An Environmentally Responsible Test During Burn-In System Design

Environmentally Responsible Burn-in & Test?

- Attributes to look for in your equipment:
 - Energy efficiency
 - Facility requirements / costs
 - Throughput, capacity, utilization
 - Test capabilities to enable offload of final test
 - Conformance to industry environmental standards
 - Reliability, uptime

3/2010 An Environmentally Responsible Test During Burn-In System Design

		Olde	er Systen	n Power A	rchitectur	е		
	208VAC In	Wiring Loss	Variable Switching Bulk Supplies (4.55V)	Bulk Power Distribution	Not Applicable	Regulation to DUT voltage (3.3V)	Distribution to BIB	Available DUT Power (3.3V @ 100A)
Power Loss (%)		0.150%	15.600%	0.440%		27.400%	0.910%	0.000%
Power Out (%)	100.00%	99.85%	84.27%	83.90%		60.91%	60.36%	60.36%
Current Out (A)	2.6	1.9	100	100		100	100	100
		New	er Syster	n Power A	Architectu	re		
	208VAC In	Wiring Loss	Fixed 48V Bulk Supplies	Bulk Power Distribution	Intermediate Bus Converters (12V)	Variable DC:DC Device Supplies (3.3V)	Distribution to BIB	Available DUT Power (3.3V @ 100A)
		0.050%	6.500%	0.003%	5.800%	4.700%	0.910%	0.000%
Loss (%)						00.000/		00 400/
Loss (%) Power Out (%)	100.00%	99.95%	93.45%	93.45%	88.03%	83.89%	83.13%	83.13%

In order to deliver $3.3V @ 100A = 330W$	Older	Newer
	Systems	Systems
Output Power (W)	330	330
Fower Loss (%)	546.7	307.0
Lost Power (W)	216.7	67.0
Reduction in Lost Power (%)		69.10%
Reduction in Lost Power/Slot (W)		149.8
Reduction in Lost Power per 72 Slot System (W)		10,782
Reduction in Lost Power assuming 20 hour usage, 350 days per year (KWH)		75,475
Savings per year based on bower cost of \$0.20 per KWH		\$15,095

Test and Burn-in Operational Considerations

13

Floor Space Utilization Comparison for High Power Systems

- Assumptions:
 - Newer systems have about the same footprint as older systems
 - Test resources (available current and power) per BIB are comparable in older and newer systems
 - Oven power dissipation in older and newer systems is not a limiting factor
 - System capacity is therefore approximately proportional to the number of BIBs or total BIB area in older vs. newer systems

3/2010 An Environmentally Responsible Test During Burn-In System Design

Floor Space Utilization Comparison for High Power Systems

Test and Burn-in Operational Considerations

19

Improve Facility Utilization with Final Test Offload

- Increase system utilization by combining test and burn-in
 - Perform long functional tests in a highly parallel environment
 - Offload long functional tests from final test
 - Implementing DFT/BIST enhances value of test during burn-in
 - Better test coverage in burn-in/test system
 - Decreases required complexity of burn-in/test system
 - →Decreases cost by decreasing number of expensive testers needed

3/2010 An Environmentally Responsible Test During Burn-In System Design

Test and Burn-in Operational Considerations

Test and Burn-in Operational Considerations

