

Session 2

ARCHIVE 2010

SMARTER PCB DESIGN

Impact of Parasitic Resonances on Load Board Performance

Gert Hohenwarter—GateWave Northern, Inc.

The Importance of the Signal Return Path

Zaven Tashjian—Circuit Spectrum, Inc. Kevin Hoffmann—Development/Test/SI

Using Ground-Signal-Power Stack-Up For Striplines In ATE Load Boards

Erkan Acar, Tim Swettlen—Intel Corporation

Spring Probe PCB Pad Wear Analysis

Valts Treibergs, Chris Cuda-Multitest

COPYRIGHT NOTICE

The papers in this publication comprise the proceedings of the 2010 BiTS Workshop. They reflect the authors' opinions and are reproduced as presented , without change. Their inclusion in this publication does not constitute an endorsement by the BiTS Workshop, the sponsors, BiTS Workshop LLC, or the authors.

There is NO copyright protection claimed by this publication or the authors. However, each presentation is the work of the authors and their respective companies: as such, it is strongly suggested that any use reflect proper acknowledgement to the appropriate source. Any questions regarding the use of any materials presented should be directed to the author/s or their companies.

All photographs in this archive are copyrighted by BiTS Workshop LLC. The BiTS logo and 'Burn-in & Test Socket Workshop' are trademarks of BiTS Workshop LLC.

Impact of Parasitic Resonances on Load Board Performance

Gert Hohenwarter GateWave Northern, Inc.

2010 BiTS Workshop March 7 - 10, 2010

Some sources of series inductance and shunt capacitance

Parasitic inductance can occur due to

- Contact construction (thin portion of contact sticking out)
- Package construction (internal routing, bond wires)
- Die layout and trace routing

Parasitic capacitance can occur due to

- PCB layout (pad size)
- Package construction (pad size)
- Die layout (routing)

3/2010

• Device input capacitance

Paper #1

Impact of Parasitic Resonances on Load Board Performance

Some sources of resonances PCB: • Coupling to unterminated or mismatched adjacent lines · Strong internal routing discontinuities, vias Mismatched tester interconnects and sockets Socket: • One sided unterminated (open ckt.) pins • Unused GND or power connection on PCB or on DUT side • Signal N/C DUT: Package design • Die layout (routing), coupled stub routes • Termination (mismatch, open) Failed circuitry 3/2010 Impact of Parasitic Resonances on Load Board Performance

The Importance of the Signal Return Path

Zaven Tashjian President, Circuit Spectrum, Inc.

Kevin Hoffmann Consultant, Development/Test/SI

2010 BiTS Workshop March 7 - 10, 2010

CIRCUIT

SPECTRUM

Correlation between simulation data and empirical data

3/2010

The Importance of the Signal Return Path

Session 2 Smarter PCB Design

	Portion of Touchstone File for Socket Pin											
									((Courtesy Jo	hnstech International)	
	!	GWN .	S2P tes	st dat	a out	put fil	e	G-S-G	configuratio	n		
	!	Sll symbo	1	521 freq-	unit	512 param	S22 leter-type	data-format	keyword	impedance-c	ohms	
	# 1.99E-	GHz 01	S 1.23E-	MA 02	R -9.8	50 5E+00	9.97E-01	-1.57E+00	0.996765505	-1.573792	0.001721621 -5.35E+01	
	3.99E-	-01	1.26E-	02	-1.4	4E+01	9.97E-01	-2.35E+00	0.9966806	-2.351074	0.002240738 -6.36E+01	
	5.98E-	-01	1.32E-	02	-2.0	9E+01	9.97E-01	-3.51E+00	0.996607061	-3.511597	0.003177961 -7.59E+01	
	7.97E-	-01	1.40E-	02	-2.6	7E+01	9.96E-01	-4.67E+00	0.996469637	-4.670654	0.004165134 -8.32E+01	
	9.96E-	-01	1.49E-	02	-3.2	0E+01	9.96E-01	-5.82E+00	0.99639086	-5.820068	0.005169833 -8.84E+01	
	1.20E+	00	1.60E-	02	-3.6	5E+01	9.96E-01	-6.97E+00	0.996175577	-6.966797	0.006201268 -9.26E+01	
	1.39E+	+00	1.72E-	02	-4.0	6E+01	9.96E-01	-8.10E+00	0.995880755	-8.102539	0.007246971 -9.61E+01	
	1.59E+	-00	1.86E-	02	-4.4	0E+01	9.95E-01	-9.23E+00	0.995474948	-9.23291	0.008310535 -9.91E+01	
	1.79E+	+00	2.01E-	02	-4.7	1E+01	9.95E-01	-1.04E+01	0.995085047	-10.35352	0.009381353 -1.02E+02	
	1.99E+	-00	2.18E-	02	-4.9	7E+01	9.95E-01	-1.15E+01	0.994622776	-11.46973	0.010462344 -1.04E+02	
	2.19E+	00	2.35E-	02	-5.2	1E+01	9.94E-01	-1.26E+01	0.994069926	-12.57422	0.011545228 -1.07E+02	
	2.39E+	00	2.54E-	02	-5.4	2E+01	9.93E-01	-1.37E+01	0.993417017	-13.66699	0.012643156 -1.09E+02	
В	and	wid	th cl	aim	ns a	are \	alid or	nly if tes	t condit	ions ar	e stated (GSG)	
	3/2010					Th	e Importanc	ce of the Sign	al Return Pa	ith	5	

	SMA	Launch	
CROUND: POWR2 CROUND2 POWR1 CROUND3		POWER2 POWER2 POWER1 PROUND1	
Improved Signal I	Return Path	Poor Signal F	Return Path
3/2010	The Importance of	the Signal Return Path	13

Using Ground-Signal-Power Stack-Up For Striplines In ATE Load Boards

Erkan Acar and Tim Swettlen Intel Corporation

2010 BiTS Workshop March 7 - 10, 2010

	Outline	
 Mo AT - F - F 	tivation E PCB Manufacturing High aspect ratio Routing density	
 - 0 • Str • Usi • Sin • Co 	Cost ipline Structures ing Power-Ground-Signal stack-up nulation and Measurement Results nclusion	

ATE PCB	ATE PCB's
	 Multiple devices Fixed size Mechanically rigid Increased leadtime
Application MB	These limits have driven the PCB thicknesses up. Boards greater than 0.250" thick are not rare.
3/2010 Using Ground-	Signal-Power Stack-Up For Striplines In ATE Load Boards 5

Spring Probe PCB Pad Wear Analysis

Valts Treibergs Chris Cuda

z.multitest

2010 BiTS Workshop March 7 - 10, 2010

<section-header> Presentation Agenda ATE PCB Loadboard Considerations Pad Wear-out Test Setup And Methodology Pad Wear Vs. Spring Probe Tips Results Pad Wear Vs. Surface Finish Results Pad Wear Due To Probe Chatter Results Summing It All Up Bissing Pices & Next States

ATE PCB Loadboard Considerations

- ATE PCBs are a significant cost contribution to a test cell:
 - \$500 \$10,000 for the bare board, plus components assembly up to \$10,000 for the most complex designs
- It is thought that most ATE boards see in excess of 4 million socket cycles – roughly an order of magnitude over typical socket contact life expectations

Spring Probe PCB Pad Wear Analysis

 MYTH or FACT? More gold on socket pads means longer life

03/2010

Pad Wear-out Test Setup Cycle test fixture Tool steel cycle plate – Probe cross-section designed for each probe Socket style Multiple probe styles can be accommodated in PCB mounting plate one setup - Hardened tool steel cycle plate that hardstops on top of socket fixture - High-speed pneumatic cycling apparatus

03/2010

Spring Probe PCB Pad Wear Analysis

4

Pad Wear-out Test Setup

- Standardized PCB outline
 - .8mm pitch offset-via on BGA grid,.125" thick PCB
 - Manufactured at Harbor Electronics using same equipment and processes as standard ATE boards
 - Pads finish plating per experiment
 - PCB pads shorted for SEM analysis compatibility

03/2010

General Pad Wear-out Test Methodology

Spring Probe PCB Pad Wear Analysis

- 2. PCB pads optically photographed new
- 3. Cycle to 1 million fixture actuations
- 4. Probes replaced some positions not repopulated
- 5. PCB pads optically photographed @ 1M
- 6. Cycle to 2 million actuations
- 7. PCB pads optically photographed @ 2M
- 8. SEM analysis: SE images of pads and marks, EDS analysis through marks @ 1M and 2M
- 9. Scoring and ranking comparison

03/2010

Spring Probe PCB Pad Wear Analysis

6

03/2010

Pad Wear Vs. Spring Probe Tips Standard Au/Ni plated PCB pads (1.27 μm Au over 5 μm Ni) 5+ probe tips: spear, conical, spherical, crown, radiused-flat 3 probe styles: CSP5 (35g) – double-ended conventional probe BTM080(28g) – machined 2-piece probe – external spring MER050(30g) – flat technology probe Fully preloaded to the PCB**

Spring Probe PCB Pad Wear Analysis

	Pro	be	Tip)S -	- Se	eve	rity	Re	esu	lts	
	Тір	SPEAR		CONICAL		SPHERICAL		CROWN		R-FLAT	
		Ni Cu		Ni	Cu	Ni	Cu	Ni	Cu	Ni	Cu
	SEVERITY	2	2	3	3	1	1	2	1	0	0
	SCORE	E 4		6		2		3		0	
Winners! Table Legend (Severity Score): None (0): No material detected Slight (1): Traces of exposed material on 10% of pad contact area or less Moderate (2): Exposed material up to 50% of pad contact area Severe (3): Exposed material – damaged pads > 50% of contact area											
)3/2(010		Spr	ing Prob	e PCB P	ad Wear	Analysis				1

Radius-flat Results 2M (.75µm Au)									
 .75 μm Au Some exposed Ni Smearing No exposed Cu 	Weg 810 KV-20 VD.15 10 µm Line - 1 Number Points - 120 Line - 1 Line - 1 Number Points - 120 Line - 108								
 <u>1.27 μm Au</u> Some exposed Ni Smearing No exposed Cu 	Vag 1000 V/20 W0.15 Topen Line 1 Mark Frider Frider Topen Line 1 Mark Frider Frider Topen Vag 1000 V/20 W0.15 Topen Line 1 Mark Frider Topen Vag 1000 V/20 W0.15 Topen Line 1 Mark Frider Topen								
03/2010	Spring Probe PCB Pad Wear Analysis 17	7							

PC	PCB Au Thickness – Severity Results											
TIP	SPE	EAR	CON	ICAL	SPHE	RICAL	CROWN		R-FLAT		РСВ	
РСВ	Ni	Cu	Ni	Cu	Ni	Cu	Ni	Cu	Ni	Cu	SCORE	
.75 µm Au	3	1	3	3	2	1	2	1	1	0	17	
1.27 µm Au	2	2	3	3	1	1	2	1	0	0	15	
Table Legend (Severity Score): None (0): No material detected Slight (1): Traces of exposed material on 10% of pad contact area or less Moderate (2): Exposed material up to 50% of pad contact area Severe (3): Exposed material – damaged pads > 50% of contact area												
03/2010				Spring F	robe PC	B Pad W	ear Anal	ysis				18

	Final Box Score											
TIP	SPE	SPEAR		CONICAL		SPHERICAL		CROWN		R-FLAT		
РСВ	Ni	Cu	Ni	Cu	Ni	Cu	Ni	Cu	Ni	Cu	SCORE	
.75 μm Au	3	1	3	3	2	1	2	1	1	0	17	
1.27 µm Au	2	2	3	3	1	1	2	1	0	0	15	
TIP SCORE	8		12		5		6		1			
03/2010 Spring Probe PCB Pad Wear Analysis 19												

Pad Wear Due To Probe Chatter

- Not all PCB wear is due to 'normal' probe use
- Probe 'chatter' can be caused by a number of different conditions:
 - Improper socket design (little or no preload) or probe goes solid
 - Socket body bowing
 - Loose or improperly installed fasteners
 - Poorly toleranced probes or socket housings

03/2010

Paper #4

20

Spring Probe PCB Pad Wear Analysis

Missing Pieces & Next Steps

- This study does not address these contact interfaces to PCB pads:
 - Blade-type contacts
 - Bare spring contacts
 - Rocking-type rigid contacts
 - Elastomeric style interconnects
- Determine the relationship between physical wear mechanisms to electrical contact performance
- Temperature effects of all wear mechanisms
- Optimizing PCB surface finishes for maximum life

03/2010

Spring Probe PCB Pad Wear Analysis

23