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Objective

• Examine socket performance as a function of 
compression level and grounding conditions

• Identify sources of parasitic resonances 

• Present socket measurements in the presence of 
resonances

• Develop performance prediction for load board 
signal path

• Assess significance of observed changes for final 
application 
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Signal path model

Resonances can occur in all individual parts or between components

Tester

Cabling and 
connector

PCB Socket DUT
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Contact parasitics as a function of displacement
(compression level)

Assembly 1 and socket are fixed, 
assembly 2 moves
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Series inductance and shunt capacitance

Varying positions result in different values of parasitic 
parameters in the equivalent circuit

C1
L1
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Some sources of series inductance and 
shunt capacitance

Parasitic inductance can occur due to 

• Contact construction (thin portion of contact sticking out)

• Package construction (internal routing, bond wires)

• Die layout and trace routing

Parasitic capacitance can occur due to

• PCB layout (pad size)

• Package construction (pad size)

• Die layout (routing)

• Device input capacitance
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Measured insertion loss (S21) and return loss (S11) 
for a socket sample with varying z compression

0.
2

6.
2

12
.2

18
.1

24
.1

30
.1

36
.1

S1
S6

S11
S16

-0.50

0.00

0.50

1.00

1.50

2.00

2.50

delta S21 [dB]

f [GHz]

Compression

S21 difference to first recorded dataset

0.
2

6.
2

12
.2

18
.1

24
.1

30
.1

36
.1

S1
S6

S11
S16

-20.0

-15.0

-10.0

-5.0

0.0

5.0

10.0

S11 [dB]

f [GHz]

Compression

S11 (f, z position)

Insertion loss (into 50 Ohms) changes by 0.7 dB at low 
frequencies and up to 2 dB at high frequencies.
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Measured time domain transmission of a step 
through a socket with varying z compression
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While overall change appears small, a plateau appears at the end
of the signal transition.  If the overall signal level is near a

transition voltage, significant timing error can occur.
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Resonances

Helmholtz 
resonator

Transmission line, open on one end, 
shorted on the other (quarter-

wavelength transformer)
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Some sources of resonances

PCB:
• Coupling to unterminated or mismatched adjacent lines
• Strong internal routing discontinuities, vias
• Mismatched tester interconnects and sockets

Socket:
• One sided unterminated (open ckt.) pins

• Unused GND or power connection on PCB or on DUT side
• Signal N/C

DUT:
• Package design
• Die layout (routing), coupled stub routes
• Termination (mismatch, open)
• Failed circuitry
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Resonances

Transmission line, open 
on one end, shorted on 

the other

Opportunities 
for open/short 

circuited 
transmission 
lines exist
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Configuration dependence on overdrive and alignment
If not properly configured, 
interconnects with multiple 

parallel conductors can 
potentially contribute to 

resonances.
Insertion loss
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Insertion loss S21 measurement for 
3 different displacements
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TDT THRU

-0.2
0.0
0.2
0.4
0.6
0.8
1.0
1.2

-0.05 0.05
t [ns]

rh
o System

float
2gnd/open
1gnd/open

Consequences of an open/short pin

TDR THRU

-0.25
-0.15
-0.05
0.05
0.15
0.25

-0.15 -0.05 0.05 0.15
t [ns]

rh
o

float
2gnd/open
1gnd/open

Measured time domain signals sent through a 
contact array (on yellow pin) show some 
changes as a result of an open/short pin (1) in 
the assembly:
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Consequences of an open/short pin
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Measured socket responses show 
dips/peaks (S21/S11) and ‘plateaus’
in a transmitted step voltage
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Consequences of an open/short pin
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The Smith chart shows 
resonances in the connection 
as a small loop

Measured insertion loss S21 of a load 
board with a parasitic resonance
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Return loss (S11) performance with varying grounding
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The ‘resonances’ observed here are not readily 
observable in the insertion loss S21 but merely 
frequencies where a perfect match is obtained.  
If there is no significant change in S21 at this 
frequency they are not necessarily detrimental
to system performance.
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Insertion loss (S21) performance 
with varying number of ground connections
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Time domain performance 
measurement with varying grounding conditions
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Time domain performance 
measurement with varying grounding conditions
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Only the 10%/90% rise time 
shows a noticeable dependence 
on the number of ground pins.
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Equivalent circuit for signal 
path models

C2

50 
R4

C12

R22

R14
T2

C11

R13

R2

C1
1

X1

Load board PCB Socket

Tester

Socket parameters from measurement, 
converted to a multi-pole SPICE model
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Model performance verification 
(measurement vs. simulation verification)
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Eye diagram change due to an adjacent pin 
open/short resonance

There is little impact from a 6 GHz resonance on a  
load board eye diagram at 6 Gbps
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Impact of resonance on load board time and 
frequency domain performance

Insertion loss model

3 GHz
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Eye diagram change due to an adjacent pin 
open/short resonance

Noticeable degradation of a load board eye 
diagram (6Gbps) from a 3 GHz resonance
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Conclusion

• Parasitic resonances can have severe impact on system 
operation and thereby potentially limit test yield.

• Individual assessment is needed since grounding 
configurations are case specific.

• Simple load board models allow for prediction of resonance 
effects and their consequences. 

• Eye diagrams show that good performance at certain 
frequencies is available even in the presence of resonances.

• Conversely, eye diagrams may miss “dangerous resonance”
conditions at frequencies other than that used.
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Agenda
• The realities of  digital signal transmission in 

PCB’s
• Modeling and simulation tools help predict 

behavior
• Use of S-parameters (S11/S22, S12/S21) and 

TDR to characterize 2-port systems
• Illustration with PCB via transitions
• A simple, but important, lesson from an SMA 

launch
• Correlation between simulation data and 

empirical data
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The Need for 3D Electromagnetic Field Solver
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RLGC Model for Incremental Length dz
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Portion of Touchstone File for Socket Pin
(Courtesy Johnstech International)

Bandwidth claims are valid only if test conditions are stated (GSG)

3/2010 The Importance of the Signal Return Path 6

Microstrip Lines with Via Transitions
From CAD Modeling by Simbeor
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Signal Via with no Ground Vias
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Signal Via with Two Ground Vias
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Signal Via with Four Ground Vias
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TDR Data for the Three Via Patterns

No Ground Vias

Four Ground Vias
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TDR Data for Two Via Patterns

Two Ground Vias, Increased Distance

Four Ground Vias
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SMA Signal Launch through PCB

• SMA flange-mount connector launch
• Two cases - one with a poor return path and one with 

an improved configuration
• Simulation results from a 2D tool
• Simulation results from a 3D EM solver
• Measured data from a test coupon using VNA
• S-parameters show performance versus frequency
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SMA Launch

Improved Signal Return Path Poor Signal Return Path
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SMA Launches with Co-planar Microstrips
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Results from 2D Modeling Tool

Improved
Path

Poor
Path
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• Microstrip T-Line with co-planar ground
• Reduced ground width to minimize simulation

Transmission Line Simulation Geometry
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Circuitous signal return path

Launch Geometry: Poor Return
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Direct path from Ground1 to Ground2 afforded 
by adding a plane to the design

Launch Geometry: Improved Return
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VNA and Test Coupon

The VNA provides measured responses over a 
frequency range (S-parameters) that can be saved 

in a Touchstone file format, allowing importing into a 
simulator for comparison

Agilent 
E8722ES
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S11 - Return Loss

Measured response in blue, simulated in red

Poor
Path

Improved
Path
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S21 - Insertion Loss

Measured response in blue, simulated in red

Poor
Path

Improved
Path
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TDR Scope and Test Coupon

Tektronix 11801C Improved path in green, 
poor path in purple
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S21 - Magnitude & Phase Comparison

Measured response in blue, simulated in red

Poor
Path

Improved
Path
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S21 - Improved vs Poor

 

 

Simulation
Data

Measured
Data

Improved path in green, poor path in purple
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Conclusions

• For signal transitions through a PCB, the nature 
of the return path will affect performance

• Comparison of simulated and measured results 
shows good correlation of general behavior

• Improving the return path takes a design that is 
usable to 3.2 Gbps and extends it to 10 Gbps
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Motivation

• Kudos for achieving aspect ratios of 30+:1
– Very impressive manufacturing
– But very costly trend to continue down this 

trend 
– There are ways to better designs 

• Use design ingenuity

• Lower cost through thinner PCBs
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Outline
• Motivation
• ATE PCB Manufacturing

– High aspect ratio
– Routing density
– Cost

• Stripline Structures
• Using Power-Ground-Signal stack-up
• Simulation and Measurement Results
• Conclusion
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ATE PCB’s

• Shorter electrical 
paths

• Standard 
interconnects

• Longer paths

• Additional 
interconnects

device

Application MB

socket

ATE PCB
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ATE PCB’s

2 1

3 4

1

Application MB

ATE PCB

These limits have driven the PCB 
thicknesses up.  Boards greater than 
0.250” thick are not rare.  

• Multiple devices
• Fixed size
• Mechanically rigid
• Increased leadtime
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Via style

Courtesy of Harbor Electronics

• Internal routing layers
– Required to meet routing density

• Any layer change requires a via
– PTH vias are preferred

• In a thick design, these vias
push the manufacturing limits 
with their high aspect ratios
– Bigger drills
– Plating process
– Yield
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Routing and Breakout Density

• Larger via drill bits 
– Reduced space for signal breakout

• Challenging to meet routing density

via

trace

via

trace

3/2010 Using Ground-Signal-Power Stack-Up For Striplines In ATE Load Boards 8

Potential Solution Options
• Use advanced via technologies

– Microvias
– Good for only a number of internal layers

• Use sequential lamination
– Multiple books can be fabricated and laminated
– Increased lead time
– Higher overall cost

• Reduce board thickness
– Easier said than done
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Board Thickness Reduction

• Eliminates the need for higher aspect ratios
• Improved performance 

– Reduced electrical length
– Shorter via stubs

• Several ways to reduce board thickness
– Reduce routing layer count

• Appealing, but requires sacrifice in performance

• Use a Ground-Signal-Power stack-up
• Another look into PCB transmission lines

3/2010 Using Ground-Signal-Power Stack-Up For Striplines In ATE Load Boards 10

PCB Transmission Lines

• Transmission lines are created to transmit 
signals point to point
– Microstrip
– Stripline

• Common in multi-layer ATE boards

dielectric

conductor

ground

conductor

ground

ground
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Stripline Background

• The signal trace is sandwiched between ground planes
– Stitched through vias

• Immune to outside noise
• Fabrication is much more complex compared to microstrip
• Used in multi-layer PCBs

Signal Trace

Ground Plane

Ground Plane

Via

3/2010 Using Ground-Signal-Power Stack-Up For Striplines In ATE Load Boards 12

Ground-Signal-Power Stack-up

• The signal trace is sandwiched between a ground 
and a power plane 
– Stitched through decoupling capacitors

Signal Trace

Power

Via

Ground

Decoupling 
Capacitors

Ground
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Partial Stack-up of an ATE PCB

• Stripline structures are sandwiched between 
ground planes

Ground

Signal

Ground

Signal

Ground

Signal

Ground

Power

Ground

Signal

Ground

Power

Ground
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Partial Stack-up of an ATE PCB

• Stripline structures are sandwiched between 
ground planes

Ground

Signal

Ground

Signal

Ground

Signal

Ground

Power

Ground

Signal

Ground

Power

Ground
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Partial Stack-up of an ATE PCB

• The layer count and board thickness can be reduced in this 
way
– 36 layers 22 layer
– 250mil 185mil

• Several challenges that do not apply to ordinary striplines

Ground

Signal

Ground

Signal

Signal

Ground

Power

Ground

Signal

Power

Ground
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Simulation

Top View

• 3D EM simulation
– Emulate gnd/pwr referencing corner cases

Trace

Profile View

Wave 
port

+

-
Wave 
port

+

-

pwr

gnd
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Simulation Results

• Insertion and return loss do not show a 
significant difference

GSP

GSG

3/2010 Using Ground-Signal-Power Stack-Up For Striplines In ATE Load Boards 18

Measurements

• Comparison of TDR responses
– No significant difference between GSG and GSP
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GSP Design Issues

• Power plane splits
– Different potentials on the same layer

• DC leakage on the signal
– Parasitic capacitances may change the DC level 

of the signal
• Power Supply Noise/Resonance 

3/2010 Using Ground-Signal-Power Stack-Up For Striplines In ATE Load Boards 20

Split Power Planes

• Multiple power nets can share the same layer
– Split power plane

• Signals may cross plane splits

Plane split

dut

trace
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A Real Example
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TDR Measurement 

No significant difference between 
TDR profiles of GSG and GSP!

3/2010 Using Ground-Signal-Power Stack-Up For Striplines In ATE Load Boards 22

Conclusion

• Conservative design practices are pushing 
limits of PCB manufacturing capabilities

• Simple changes such as GSP stack-ups can 
reduce manufacturing complexity without 
impacting the performance

• Ideal supplier builds to performance specs 
not physical specs
– More focus on design and layout for 

manufacturing
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Spring Probe PCB Pad Wear Analysis 203/2010

• ATE PCB Loadboard Considerations
• Pad Wear-out Test Setup And Methodology
• Pad Wear Vs. Spring Probe Tips

– Results
• Pad Wear Vs. Surface Finish

– Results
• Pad Wear Due To Probe Chatter

– Results
• Summing It All Up
• Missing Pieces & Next Steps

Presentation Agenda
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ATE PCB Loadboard Considerations
• ATE PCBs are a significant cost contribution to 

a test cell:
– $500 - $10,000 for the bare board, plus 

components assembly up to $10,000 for the most 
complex designs

• It is thought that most ATE boards see in 
excess of 4 million socket cycles – roughly an 
order of magnitude over typical socket contact 
life expectations

• MYTH or FACT? More gold on
socket pads means longer life

Spring Probe PCB Pad Wear Analysis 403/2010

Pad Wear-out Test Setup
• Cycle test fixture

– Probe cross-section 
designed for each probe 
style

– Multiple probe styles can 
be accommodated in 
one setup

– Hardened tool steel 
cycle plate that 
hardstops on top of 
socket fixture

– High-speed pneumatic 
cycling apparatus

Tool steel cycle plate

Socket

PCB mounting plate
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Pad Wear-out Test Setup
• Standardized PCB outline

– .8mm pitch offset-via on BGA grid, 
.125” thick PCB

– Manufactured at Harbor Electronics 
using same equipment and 
processes as standard ATE boards

– Pads finish plating per experiment

– PCB pads shorted for SEM analysis 
compatibility

Spring Probe PCB Pad Wear Analysis 603/2010

General Pad Wear-out Test Methodology
1. New probes loaded in test fixture – tip 

condition photographed
2. PCB pads optically photographed – new
3. Cycle to 1 million fixture actuations
4. Probes replaced – some positions not 

repopulated
5. PCB pads optically photographed @ 1M
6. Cycle to 2 million actuations
7. PCB pads optically photographed @ 2M
8. SEM analysis: SE images of pads and marks, 

EDS analysis through marks @ 1M and 2M
9. Scoring and ranking - comparison
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Pad Wear Vs. Spring Probe Tips
• Standard Au/Ni plated PCB pads (1.27 µm Au over 5 

µm Ni)
• 5+ probe tips: spear, conical, spherical, crown, 

radiused-flat
• 3 probe styles:

– CSP5 (35g) – double-ended conventional probe
– BTM080(28g) – machined 2-piece probe – external spring
– MER050(30g) – flat technology probe

• Fully preloaded to the PCB**

SPEAR CONICAL SPHERICAL CROWN RADIUS-FLAT

Spring Probe PCB Pad Wear Analysis 803/2010

Spear Tip Results 2M (1.27 µm Au)
• Extreme 

divoting
• Exposed 

copper foil
 

Pad 1 (2M) Pad 6 (1M) Pad 10 (2M) 

 
 

Line - 1 
Number Points - 359 

Line Lenght - 106.1µm   
Au   407,Ni   26, Cu   14  
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Conical Tip Results 2M (1.27 µm Au)
• Extreme 

divoting
• Exposed 

copper foil
 

Pad 2 (2M) Pad 6 (1M) Pad 9 (2M) 

 
 

Line - 1 
Number Points - 394 

Line Lenght - 116.43µm

 
Au   520, Ni   14, Cu   24  

Spring Probe PCB Pad Wear Analysis 1003/2010

Spherical Tip Results 2M (1.27 µm Au)
• Radiused

dimple
• No 

exposed 
copper foil

• Some 
burnishing

 
Pad 2 (2M) Pad 4 (1M) Pad 9 (2M) 

 
 

Line - 1 
Number Points - 299 

Line Lenght - 132.5µm 

 

 
Au   606,Ni   9, Cu   0  
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Crown Tip Results 2M (1.27 µm Au)
• Smeared 

gold
• No exposed 

copper foil
• Some 

burnishing
• Exposed 

nickel
 

Pad 1 (2M) Pad 4 (1M) Pad 10 (2M) 

 
 

Line - 1 
Number Points - 390 

Line Lenght - 138.13µm 

 
Au   577, Ni   6, Cu   9  

  

Spring Probe PCB Pad Wear Analysis 1203/2010

Radius-flat Results 2M (1.27 µm Au)
• Smeared gold
• No exposed 

copper foil
• Some burnishing
• No exposed 

nickel

 
 

Line - 1 
Number Points - 120 
Line Lenght - 82.8µm 

 
 

Au   450, Cu   30, Ni   42   

 
Pad 4 (1M) Pad 7 (2M) 
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1

Cu

3

2

Ni
CROWN

SCORE

SEVERITY

Tip

00113322

0264

CuNiCuNiCuNiCuNi
R-FLATSPHERICALCONICALSPEAR

Table Legend (Severity Score):
None (0):  No material detected
Slight (1): Traces of exposed material on 10% of pad contact area or less
Moderate (2): Exposed material up to 50% of pad contact area
Severe (3): Exposed material – damaged pads > 50% of contact area

Probe Tips – Severity Results

Spring Probe PCB Pad Wear Analysis 1403/2010

Pad Wear Vs. Surface Finish
• 2 PCB plating recipes: 

– 1.27 µm Au over 5 µm Ni
– .75 µm Au over 5 µm Ni

• 5 probe tips: spear, conical, spherical, crown, radius-
flat

• 3 probe styles:
– CSP5 (35g) – double-ended conventional probe
– BTM080(28g) – machined 2-pc probe – external spring
– MER050(30g) – flat technology probe

• Fully preloaded to the PCB
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Spherical Tip Results 2M

.75 µm Au
• Some exposed 

Ni
• Burnishing
• No exposed Cu

1.27 µm Au
• Some exposed 

Ni
• Burnishing
• No exposed Cu

 
 

Line - 1 
Number Points - 400 

Line Lenght - 127.53µm

 
Au   838, Ni   41, Cu   11  

 
 

Line - 1 
Number Points - 299 

Line Lenght - 132.5µm 

 

 
Au   606,Ni   9, Cu   0  

Spring Probe PCB Pad Wear Analysis 1603/2010

Crown Tip Results 2M

 
 

Line - 1 
Number Points - 390 

Line Lenght - 138.13µm 

 
Au   577, Ni   6, Cu   9  

  

 
 

Line - 1 
Number Points - 393 

Line Lenght - 139.13µm 

 
Au   624, Ni   11, Cu   5  

  

.75 µm Au
• Some exposed 

Ni
• Smearing
• No exposed Cu

1.27 µm Au
• Some exposed 

Ni
• Smearing
• No exposed Cu
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Radius-flat Results 2M (.75µm Au)

 
 

Line - 1 
Number Points - 120 

Line Lenght - 119 81µm

 
 

Au   1110, Cu   63, Ni   69  
  

 
 

Line - 1 
Number Points - 120 
Line Lenght - 82.8µm 

 
 

Au   450, Cu   30, Ni   42   

.75 µm Au
• Some exposed 

Ni
• Smearing
• No exposed Cu

1.27 µm Au
• Some exposed 

Ni
• Smearing
• No exposed Cu

Spring Probe PCB Pad Wear Analysis 1803/2010

PCB Au Thickness – Severity Results

Table Legend (Severity Score):
None (0):  No material detected
Slight (1): Traces of exposed material on 
10% of pad contact area or less
Moderate (2): Exposed material up to 50% of 
pad contact area
Severe (3): Exposed material – damaged 
pads > 50% of contact area

1

1

Cu

2

2

Ni

CROWN

15001133221.27 
µm Au

0

Cu

1

Ni

R-FLAT

17123313.75 
µm Au

TIP

PCB CuNiCuNiCuNi
PCB 

SCORE

SPHERICALCONICALSPEAR
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Final Box Score

1

1

Cu

6

2

2

Ni

CROWN

15128TIP 
SCORE

15001133221.27 
µm Au

0

Cu

1

Ni

R-FLAT

17123313.75 µm 
Au

TIP

PCB CuNiCuNiCuNi

PCB 

SCORE

SPHERICALCONICALSPEAR

Spring Probe PCB Pad Wear Analysis 2003/2010

Pad Wear Due To Probe Chatter
• Not all PCB wear is due to 

‘normal’ probe use
• Probe ‘chatter’ can be caused 

by a number of different 
conditions:
– Improper socket design (little or 

no  preload) or probe goes solid
– Socket body bowing
– Loose or improperly installed 

fasteners
– Poorly toleranced probes or 

socket housings
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Pad Wear Due To Probe Chatter
• Spherical 

probe tip
• 1.27µm Au 

PCB
• Severe base 

material 
exposure

• Abrasion of 
probe tip

 

 
 

Line - 1 
Number Points - 503 

Line Lenght - 178.06µm 

 
 

Au   797,Cu   61, Ni   170

No probe preload Proper preload

No probe preload

Spring Probe PCB Pad Wear Analysis 2203/2010

Summing It All Up
• PCB pad wear-out is a costly issue
• PCB pad wear can be minimized by:

– Specifying spherical or radius-flat probe tip 
geometries for socket pins

– Insure that socket pin preload is maintained to 
minimize probe chatter

• Gold thickness on PCB pads does not have a 
significant impact on board longevity
– However, future PCB finishes may significantly 

improve pad life
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Missing Pieces & Next Steps
• This study does not address these contact interfaces 

to PCB pads:
– Blade-type contacts

– Bare spring contacts

– Rocking-type rigid contacts

– Elastomeric style interconnects

• Determine the relationship between physical wear 
mechanisms to electrical contact performance

• Temperature effects of all wear mechanisms

• Optimizing PCB surface finishes for maximum life




