

ARCHIVE 2010

SOCKET DESIGN, YOU WANT WHAT?

Development of a 33Ghz Final Test Socket

Fred Megna, Hidekazu "Hide" Miura-MJC Electronics Corporation

Socket Designs That Save Money

Mike Ramsey, Larry Furman—Plastronics Socket Company

Challenges of Test on Balls at Burn-in

Roland Muwanga, Bimal Shah, Todd Coons—Intel Corporation

An Adaptable Test Socket Concept that Meets Both the Test and Burn-In Needs of 21st Century Array Packages

Alexander Barr—3M Company Akihiko Furuta, Masahiko Kobayashi, Yoshihisa Kawate—Sumitomo 3M Ltd.

COPYRIGHT NOTICE

The papers in this publication comprise the proceedings of the 2010 BiTS Workshop. They reflect the authors' opinions and are reproduced as presented , without change. Their inclusion in this publication does not constitute an endorsement by the BiTS Workshop, the sponsors, BiTS Workshop LLC, or the authors.

There is NO copyright protection claimed by this publication or the authors. However, each presentation is the work of the authors and their respective companies: as such, it is strongly suggested that any use reflect proper acknowledgement to the appropriate source. Any questions regarding the use of any materials presented should be directed to the author/s or their companies.

All photographs in this archive are copyrighted by BiTS Workshop LLC. The BiTS logo and 'Burn-in & Test Socket Workshop' are trademarks of BiTS Workshop LLC.

BiTS Workshop 2010 Archive

Socket Design, You Want What?

Development of a 33Ghz Final Test Socket

Hidekazu "Hide" Miura , Fred Megna MJC Electronics Corp.

2010 BiTS Workshop March 7 - 10, 2010

Socket Design, You Want What?

Socket Design, You Want What?

Socket Design, You Want What?

Housing Material Selection

			100		Torion 4203 PAI	Torion 5530 PAJ (CM)	PEEK 450
		Physical Properties	Units	Comments -	Poly-amide-imide Electrical Grade	30% Grass Reinforced Compression Method	Poly-Ethere-Ethe Ketone (Unfilled
1	1	Specific Gravity (比重)		D792	1.41	1.61	1.31
	2	Tensile Strength(引張強度)	psi	D638	20000 (138MPa)	15000	16000 (110MPa
ECH .	3	Tensile Modulus(引張弾性率)	psi	D638	600000 (4136MPa)	900000	630000 (4343MF
INN	4	Elongation (伸び)	96	D638	10	3	40
242	5	Flexural Strength(曲げ強度)	psi /				
		Province Modulus (南げ硬枝園)					
		Element Modulue(東仔羅特軍)					
		Element Modulue(東仔硬結葉)			500	5800	480
		Element Modulue(東仔硬結葉)	1070 MMm 18	F433	500 1.8	5800 2.5	480
	23	Dielectric Strength,Short Term(總議副力)	orro mmi तर्थ म Volts/mil	F433 D149	500 1.8 580	5800 2.5 700	480 1.75 480
ELECT	23 24	Dielectric Strength,Short Term(總編蜀力) Surface Resistance(体積固有抵抗)	Volts/mil Ohm/Square	F433 D149 coseso s11.11	500 1.8 580 10 ¹⁸	5800 2.5 700 10 ¹³	480 1.75 480 710 13
ELECTRIC	23 24 25	Dielectric Strength,Short Term(絶暴耐力) Surface Resistance(体積固有抵抗) Dielectric Constant(誘電事)	oro ततात तर्द ग Volts/mil Ohm/Square 1MHz	F433 D149 ecoresco s11.11 D150	500 1.8 580 10 ¹⁸ 4.2	5800 2.5 700 10 ¹³ 8.3	490 1.75 480 10 ¹² 3. 3
ELECTRICAL	23 24 25 26	Dielectric Strength,Short Term(絶縁耐力) Surface Resistance(体積固有紙版) Dielectric Constant(誘電事) Dissipation Factor	Torre inflin آلاً Volts/mil Ohm/Square 1MHz 1MHz	F433 D149 coseso si1.11 D150 D150	500 1.8 580 10 ¹⁸ 4.2 0.026	5800 2.5 700 10 ¹³ 6.3 0.05	480 1.75 480 10 ¹³ 3.3 0.003
ELECTRICAL HIS	23 24 25 26 27	Dielectric Strength,Short Term(總議副力) Surface Resistance(体積固有抵抗) Dielectric Constant(誘電率) Dissipation Factor Water Absorption Immersion,24hr(吸水率:24hr)	Terrer mmin رو بر Volts/mil Ohm/Square 1MHz 1MHz	F433 D149 costeso s11.11 D150 D150 D570(2)	500 1.8 580 10 ¹⁸ 4.2 0.026 0.4	5000 2.5 700 10 ¹³ 6.3 0.05 0.3	480 1.75 480 10 ⁻¹² 3.3 0.003 0.1

Socket Design, You Want What?

Socket Design, You Want What?

Summary: >When all pins are installed in the socket, Gain is low. >When NC and GND pins are removed, Gain is similar to PTB. Comments: >We assumed that the low gain is caused by a ground loop of the NC pins. NC and GND cause lower Gain GND GND NC RF NC GND 3/2010 Development of a 33Ghz Final Test Socket 19

Socket Design, You Want What?

Socket Design, You Want What?

Socket Designs That Save Money

Mike Ramsey - Plastronics Larry Furman - Plastronics

2010 BiTS Workshop March 7 - 10, 2010

<section-header><section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item>

Socket Design, You Want What?

Socket Design, You Want What?

Socket Design, You Want What?

Socket Design, You Want What?

Soc	ket Cost Reductions Limited Solution Component Reduction versus Transfer of Functionality Component Reduction is a savin but limitedcan only remove so much	gs,
Thought process is still bound by X,Y,Z socket solutions	Still have a dedicated part numb the next application means step & repeat the whole process	er
03/2010	Socket Designs That Save Money	9

Socket Design, You Want What?

Modular So Bi	ockets at BiTS	
High Temperature, Fast Turnaround Modular Burn-in Socket Rick Taylor, Stefan Lang, Ernie Frain EP Ants	Modular Design Flexible Mold Tools	
2009 BITS Workshop March 8 - 11, 2009	Fast Delivery	
Anatomy of the socket remains unchanged, but now constraints allow fo reuse; spread the high o of the socket	t r cost	
03/2010 Socket De	signs That Save Money 11	

Socket Design, You Want What?

Socket Design, You Want What?

Socket Design, You Want What?

Flexible Business Design

Redesign the Value Delivery System

Socket User:

Actively participate in the design build up Accept that this may not be optimal for every individual application Understand the economies gained over multiple applications

Socket Maker:

Need to rethink design, supply chain, manufacturing, and sales Get comfortable being a component supplier to other socket makers Develop skills to build sockets with other socket maker's components 03/2010 Socket Designs That Save Money 18

Socket Design, You Want What?

Summary
This concept:
Changes the way Socket Makers and Socket Users think of their business
Asks - can you afford customized designs?
Creates economy of scale with universal components
Forces you to rethink how you do business today
03/2010 Socket Designs That Save Money 19

Socket Design, You Want What?

Challenges of Test on Balls at Burn-in

Roland Muwanga, Todd Coons, Bimal Shah Intel Corporation

Test on balls is not new, Burn-In is not new, so what's the challenge?

2010 BiTS Workshop March 7 - 10, 2010

Socket Design, You Want What?

Socket Design, You Want What?

Addressing These Trends Cost Effectively Test time is a key differentiator between BI and other Test steps Mobile / Desktop Server Example of average times for Struct/Func Test time Х Х Structural/Functional test 16X Burn-In time 70X versus BI ۲ Cost Scaling

- Socket costs should ideally scale with test time to maintain relative affordability of test step.
 E.g. with a BL socket at 1/10 the price of a structural/function
- E.g., with a BI socket at 1/10 the price of a structural/functional test socket, the structural/functional test socket provides1.5X to 10X more production than the BI socket.
- Emerging product trends will challenge this cost scaling!

3/2010 Challenges of Test on Balls at Burn-in

Paper #3

12

Socket Design, You Want What?

Summary

- Packages are getting thinner with finer pitch
- Changes in ball-attach processes are complex
- The interaction of these factors can create new challenges at Test
- What's Needed: No-clean contact pins validated on emerging BGA fluxes that are low force and cost effective!

3/2010

Challenges of Test on Balls at Burn-in

13

Socket Design, You Want What?

An Adaptable Test Socket Concept that Meets Both the Test and Burn-In Needs of 21st Century Array Packages

> Alexander Barr 3M

Akihiko Furuta, Masahiko Kobayashi, Yoshihisa Kawate Sumitomo-3M

2010 BiTS Workshop March 7 - 10, 2010

Προ	cription of the 3M EAST Socket
	bet/Appliedies Opened that EACT Context Addresses
• war	ket/Application Space that FAST Socket Addresses
• The	3M FAST Product Line
 Abil Pitc 	ity to Accommodate Different Ball Patterns and hes
 High 	h Speed Testing Issues
• Cari	tridges to Aid Power and Ground Distribution
• Emb Nois	bedded Capacitance Addressing Power Supply se Issues
Prol	be Pins
• Flex FAS	kibility and Economy Improvement Provided by ST Sockets

Socket Design, You Want What?

Socket Design, You Want What?

