

ARCHIVE 2008

"Basic Chip Reliability Concepts (Product RE "101")" Ann Swift Senior Engineer IBM Microelectronics

This talk focuses on the basic concepts of CMOS semiconductor screening and failure rate projections. Basic reliability engineering concepts are discussed (the "bathtub" curve, the difference between wearout and defect mechanisms, acceleration factors, etc.). Failure rate models to relate accelerated testing/stressing to product lifetimes are illustrated. Various manufacturing screens (such as Burn-in and Voltage Screen) are shown along with their impact on product failure rates. What the future might hold for reliability screening is also discussed.

Who should have attended this tutorial?

What is that accelerated testing/stressing that companies do using the sockets developed by BiTS member companies? Have you ever wondered what these product reliability engineers you talk to do? If so, this tutorial will help you understand the world of reliability engineering and accelerated testing/stressing. This talk will focus on basic concepts of CMOS semiconductor screening and failure rate projections. Various manufacturing screens (such as Burn-in and Voltage Screen) will be discussed along with their impact on product failure rates. The talk will begin with the basic concepts of reliability engineering. The differences between wearout and defect mechanisms in semiconductor devices will be discussed. Reliability testing methods including stress acceleration and screening will be illustrated and examples of how to relate accelerated data to "real life" will be discussed. This tutorial is a must for anyone interested in starting to understand the field of chip reliability.

COPYRIGHT NOTICE

The papers in this publication comprise the proceedings of the 2008 BiTS Workshop. They reflect the authors' opinions and are reproduced as presented , without change. Their inclusion in this publication does not constitute an endorsement by the BiTS Workshop, the sponsors, BiTS Workshop LLC, or the authors.

There is NO copyright protection claimed by this publication or the authors. However, each presentation is the work of the authors and their respective companies: as such, it is strongly suggested that any use reflect proper acknowledgement to the appropriate source. Any questions regarding the use of any materials presented should be directed to the author/s or their companies.

All photographs in this archive are copyrighted by BiTS Workshop LLC. The BiTS logo and 'Burn-in & Test Socket Workshop' are trademarks of BiTS Workshop LLC.

STRE Illustration - F to stress (and 1000 bours	SS CAPACITY IN Program schedule gi I do test readouts or	IPORTANT ves you 2 months a) 1000 parts for
Ovens	2 (16 BIB slots/oven)	4 (16 BIB slots/oven)
\$1M	\$2M	\$4M
BIBs	32 (16 x 2 ovens)	64 (16 x 4 ovens)
\$5-7K	\$160K-\$224K	\$320K-\$448K
Sockets	1024 (32 x 32 per BIB)	1024 (64 x <mark>16</mark> per BIB)
\$300-\$400*	\$307.2K-\$409.6K	\$307.2K-\$409.6K
(*high power can be \$500-\$800!!)		
Total	\$2.47M-\$2.63M	\$4.63M-\$4.86M
		2X More

OUTLINE	
 Reliability Stressing/Model 	
 Qualification Cycle 	
Reliability "Categories"	
"Technology" RE mechanisms	
"Defect" / "Product" RE mechanisms	
 Building a Reliability Model 	
Product Stress Profiles/Measurements	
Effects of Screens	
 Reliability Modeling 	
 FITs, Chi-Squared, etc. 	
 Manufacturing Screens 	
 Reliability Monitoring 	
12 BiTS 2008 Tutorial - Basic Chip Reliability Concepts (Product RE "101") March 09, 2008	© 2008 IBM Corporation

BiTS 2008 Tuto

Tutorial 1

© 2008 IBM Corpora

Reliability Concepts (Product RE "101") | March 09, 2008

FEOL WEAROUT MECHANISMS
Gate Oxide Wearout
 Why SiO2 ? Amorphous insulator Has similar TCE (thermal coefficient of expansion) as silicon Easy to grow Forms a tight bond Bond free from impurities Easy to integrate in fabrication process Stable, insensitive to subsequent high temp. process steps Interface states can be electrically neutralized (H2-anneal) Very large energy gap High resistivity, (low leakage current, really?) Not true anymore for ultra-thin oxides
Courtesy of Ernest Wu, IBM
36 BiTS 2008 Tutorial - Basic Chip Reliability Concepts (Product RE "101") March 09, 2008 @ 2008 IBM Corporation

FEOL WEAROUT MECHANISMS		
<u>Gate Oxide Wearout</u>		
 Breakdown modes 		
 Hard Breakdown (HBD) 		
 probably a result of thermal damage when sufficient energy is deposited during the breakdown transient. 		
 Influenced by the impedance of the circuitry driving the gate in a particular application. 		
 Soft Breakdown (SBD) 		
 Occurs in a localized spot, and therefore the current after breakdown is independent of device area 		
 Progressive breakdown (PBD) 		
Present research is aimed at better understanding the		
Nature of the conduction though a breakdown spot		
Effect of the oxide BD on device and circuit performance		
 Lab vehicle vs. SBD vs. HBD vs. PBD vs. circuit "failure" Courtesy of Emest Wu, IBM 		
48 BITS 2008 Tutorial - Basic Chip Reliability Concepts (Product RE "101") March 09, 2008 @ 2008 IBM Corporation		

FEOL WEAROUT MECHANISMS
<u>Hot Carriers</u>
 Are Holes and/or Electrons that gain enough energy to cause a change in MOSFET electrical characteristics
 Can alter circuit timing or function
 Channel length dependent
 Physical Mechanism
 Large electric field near drain
 Channel carriers accelerate to high energies
 Causes interface-state generation, electron
trapping/detrapping, and Hole trapping/detrapping
 probably caused by the Electron breaking a Silicon- Hydrogen bond at the Si-SiO₂ Interface
 If the Silicon and Hydrogen recombine, no interface trap is created
 If the Hydrogen diffuses away, an interface trap is created
79 BiTS 2008 Tutorial - Basic Chip Reliability Concepts (Product RE "101") March 09, 2008 © 2008 IBM Corporation

FEOL WEAROUT MECHANISMS
Hot Carriers
 Drain engineering options Graded junction
 Reduces Isub/Id by reducing peak electric field Many methods
 Double diffused drain Lightly doped drain
Gate overlapped drain
 Can result in reduced circuit performance due to higher series resistance and/or higher overlap capacitance
 Can lead to severe shifts in series resistance due to hot carriers
87 BiTS 2008 Tutorial - Basic Chip Reliability Concepts (Product RE "101") March 09, 2008 © 2008 IBM Corporation

FEOL WEAROUT MECHANISMS Hot Carriers
 Improve Si-SiO2 interface options Enhance Intrinsic properties → Minimize the number of Si-H precursors Affected by Oxidation conditions Plasma, charging damage Water related species Interface "hardening" Reduces probability of generating interface states Incorporate Nitrogen at the Si-SiO2 interface Can have undesired effects on device parametrics Replace Hydrogen with Deuterium Potential for >100X lifetime improvement No direct impact of device electrical characteristics
88 BiTS 2008 Tutorial - Basic Chip Reliability Concepts (Product RE *101") March 09, 2008 @ 2008 IBM Corporation

BEOL WEAROUT MECHANISMS
Electromigration (EM)
 Metallization microstructure, current density in the line, interfacial integrity, and chip operating temperature influence the rate of EM
Fails are due to
 Open line (void)
 Short to neighboring line (extrusion)
 Resistance increase (e.g., 20%) – circuit timing
 Once the EM process starts, the damage accelerates due to localized increase in temperature due to current crowding
 The presence of a void causes the current density to increase in the vicinity around itself because it reduces the cross sectional area of the conductor
 The whole process continues until the void is large enough to break the line
91 BiTS 2008 Tutorial - Basic Chip Reliability Concepts (Product RE "101") March 09, 2008 © 2008 IBM Corporation

BEOL WEAROUT MECHANISMS
 Cu provided superior "delays" when compared to AICu (wiring limitations were hampering circuit performance).
 Became widely used once "device poisoning" solutions developed Cu/cap interface is primary EM diffusion path
 Improved EM performance due to superior electrical and thermal conductivity and higher melting point
However, some of that advantage lost with
 greater width of failure distribution → larger fraction of failures prior to the targeted EOL
No incubation time → reduces EM advantage as temp. rises
 Weak interfaces → more susceptible to extrusion failure
 Use of lower dielectric constant interlevel insulators has influenced EM performance
much lower thermal conductivity
 More heating in upper layer of metal
More risk for damage due to electrical overload
98 © 2008 IBM Corporation

BEOL WEAROUT MECHANISMS
Stress Induced Voiding
■ Cu "pluses"
 Higher resistance to stress migration vs Al
 Lower resistance, smaller lines with same current carrying capability
Cu "minuses"
 High diffusivity through dielectrics
 Must be encapsulated in a barrier film (usually a derivative of Ta or Ti) to prevent copper from diffusing into transistors
 Denser circuits → extra parasitic capacitance → use of lower dielectric constant dielectrics
 The spin-on-coat process of low-k dielectric material requires furnace annealing to cure the film
 Microstructural changes in Cu occur that increase the tensile strain in the Cu lines can lead to stress induced voiding during chip operation
 Voids increase the resistance > lead to chip failure.
103 BiTS 2008 Tutorial - Basic Chip Reliability Concepts (Product RE "101") March 09, 2008 @ 2008 IBM Corporation

1212					
В	EOL WE	AROUT I	MECHAN	IISMS	
Stress Induced	ced Voiding	L			
 Passivation (Percent 	e <mark>ffects</mark> t fallout after	stress			
	Passivation Thickness (µm)				
	remperature	0.25	0.5	3.0	
	150	2	1	82	
	225	0	0.6	92	
	285	86	36	46	
	315	97	98	100	
113 BiTS 20	D8 Tutorial - Basic Chip Ré	μm, Al(Cu,Si),	SiN Passivatio	008 © 2008 IBM	Corporation

"POPULAR" STRESS PROFILES
 "3-CELL" Used to determine acceleration factor constant(s) 3 "cells" with only one parameter (temperature or voltage) varied between any 2 cells Cell 1 - Voltage 1 (V1) / Temperature 1 (T1)
 Cell 2 - Voltage 1 (V1) / Temperature 2 (T2) Cell 3 - Voltage 2 (V2) / Temperature 1 (T1) "STEP"
 Acceleration factors known / assumed Start with lower conditions first to guard against "surprises" & then "step" to higher conditions
 "HIGH CELL" Acceleration factors known / assumed Stress run at "high" conditions
133 BiTS 2008 Tutorial - Basic Chip Reliability Concepts (Product RE "101") March 09, 2008 @ 2008 IBM Corporation

SCREEN		
	ELECTRICAL SHORTS	
VOLTAGE SCREEN		
	FIN OPENS	OPENS
SCREEN		
CONLEN	DEFECT TYPES	

BURN-IN TYPES				
 STATIC DC bias, high temperature High bipolar stress efficiency 				
 2X improvement 				
 LIMITED MONITOR INSITU (a.k.a. "Dynamic") 1.5xVdd / 140C Tchip (goal) Functionally running w/expects (at least one output monitored) Typically 10X improvement 				
 INSITU 1.5xVdd / 140C Tchip (goal) Functionally running w/expects (all outputs monitored (goal)) Reduces "escapes" due to equipment and product Identifies marginal, recoverable fails Typically >30X improvement 				
145 BiTS 2008 Tutorial - Basic Chip Reliability Concepts (Product RE "101") March 09, 2008 © 2008 IBM Corporation				

	"TYPES" of BURN-IN "ESCAPES"
	Pattern
	 Insufficient stress patterns or circuit/electrical nodes not exercised/toggled
	Functional
	Device not functional at Burn-in conditions
•	Recoverable
	 Fails recover before tests are performed
•	Bias
	 Defects not significantly accelerated by temperature and/or voltage
•	Operational
	 Failure to apply required stress conditions (equipment/procedural/etc.)
146	BITS 2008 Tutorial - Basic Chip Reliability Concepts (Product RE "101") March 09, 2008 @ 2008 IBM Corporation

OUTLINE	
 Reliability Stressing/Model Qualification Cycle Reliability "Categories" "Technology" RE mechanisms "Defect" / "Product" RE mechanisms Building a Reliability Model Product Stress Profiles/Measurements Effects of Screens Reliability Modeling FITs, Chi-Squared, etc. 	
 Manufacturing Screens 	
Reliability Monitoring	
159 BiTS 2008 Tutorial - Basic Chip Reliability Concepts (Product RE "101") March 09, 2008	© 2008 IBM Corporation

VOLTAGE SCREEN			
 Dynamic (DVS) 			
 Voltages greater than BI 			
 Functionally running while at high voltage 			
 Good pattern coverage 			
 Enhanced (EVS) 			
 Voltages higher than DVS 			
 Static bumps to EVS voltage; no clocks at high Vdd 			
 Limited patterns 			
178 BiTS 2008 Tutorial - Basic Chip Reliability Concepts (Product RE "101") March 09, 2008 © 2008 IBM Corporation			

OUTLINE	
 Reliability Stressing/Model Qualification Cycle Reliability "Categories" "Technology" RE mechanisms "Defect" / "Product" RE mechanisms Building a Reliability Model Product Stress Profiles/Measurements Effects of Screens Reliability Modeling FITs, Chi-Squared, etc. 	
 Manufacturing Screens 	
Reliability Monitoring	
193 BiTS 2008 Tutorial - Basic Chip Reliability Concepts (Product RE "101") March 09, 2008	© 2008 IBM Corporation

MONITOR SCOPE
 Monitor needs to factor in
 Fab(s)
 Technology – same/similar features/design ground rules to existing monitors
 Same critical tool set
 Qual data for technology
 Enough volume to have good vintage representation
 Is there test/stress capacity in place to support
 Consistent In-Line/Electrical/Maverick Criteria
 Monitor vs. other products in the technology
 Test Coverage, Unique Tests & Screens
 Operating Voltages
 Design Features
 Design Sensitivity To Defects
198 BiTS 2008 Tutorial - Basic Chip Reliability Concepts (Product RE "101") March 09, 2008 © 2008 IBM Corporation

SUMMARY	
 Reliability Stressing/Model 	
 Qualification Cycle 	
 Reliability "Categories" 	
"Technology" RE mechanisms	
"Defect" / "Product" RE mechanisms	
 Building a Reliability Model 	
Product Stress Profiles/Measurements	
 Effects of Screens 	
 Reliability Modeling 	
 FITs, Chi-Squared, etc. 	
- Manufacturing Seveens	
 Manufacturing Screens 	
 Reliability Monitoring 	
201 BiTS 2008 Tutorial - Basic Chip Reliability Concepts (Product RE "101") March 09, 2008	© 2008 IBM Corporation

ACKNOWLEDGEMENTS	
 Technology RE team in Burlington, Vt. For their help with the Wearout mechanisms sections Tim Sullivan Al Stong Ernest Wu Steve Mittl Ron Bolam 	
202 BiTS 2008 Tutorial - Basic Chip Reliability Concepts (Product RE "101") March 09, 2008 @ 2008 IBM Corpo	ration

© 2008 IBM Corporation

ABOUT THE AUTHOR

Ann Swift is a Senior Engineer in the IBM Microelectronics Division of the Systems and Technology Group based in Essex Junction, Vermont. She received her B.S in Electrical Engineer from Penn State University and a M.S. in Materials Science from the University of Vermont. She has over 25 years of experience in the area of Reliability and Quality. She has worked in the area of DRAM quality and reliability. Her current assignment is in the area of logic product reliability engineering as a lead engineer working on Microprocessors, ASICs, and other custom logic products in 65nm, 45nm, and 32nm SOI and "bulk" CMOS technologies. She is responsible for the reliability of new products introduced in leading edge technologies. She has (co) authored several papers and has presented several times both internally and externally her popular "Product Reliability 101" talk.

BiTS 2008 Tutorial - Basic Chip Reliability Concepts (Product RE "101") | March 09, 2008

