

ARCHIVE 2008

INNOVATIVE CONTACT TECHNIQUES

"Contact Pin Complexities: Valuing Performance and Cost" Paul Schubring Plastronics

"New Concept in Spring Probe Design" John Winter, Larre Nelson, Amos Friedner Rika Denshi America, Inc.

"Non-Contact System-in-Package Testing" Jeff Hintzke, Chris Sellathamby, Brian Moore Scanimetrics, Inc.

COPYRIGHT NOTICE

The papers in this publication comprise the proceedings of the 2008 BiTS Workshop. They reflect the authors' opinions and are reproduced as presented , without change. Their inclusion in this publication does not constitute an endorsement by the BiTS Workshop, the sponsors, BiTS Workshop LLC, or the authors.

There is NO copyright protection claimed by this publication or the authors. However, each presentation is the work of the authors and their respective companies: as such, it is strongly suggested that any use reflect proper acknowledgement to the appropriate source. Any questions regarding the use of any materials presented should be directed to the author/s or their companies.

All photographs in this archive are copyrighted by BiTS Workshop LLC. The BiTS logo and 'Burn-in & Test Socket Workshop' are trademarks of BiTS Workshop LLC.

Agenda				
Introduction				
 Technology Trends Cost Background 				
The Conflict				
The Development Challenge				
Contact Solution Comparison				
 Optimal Solution H-pin – Solution & Innovation 				
Conclusion				
3/2008 Contact Pin Complexities: Valuing Performance and Cost	2			

Introduction

- Technology trends driving Moore's law increasingly at odds with the economics needed to sustain past business performance
- As a percent of total product cost, tooling is low, but rising - Cost pressures never greater

BITS 2008

Innovative Contact Techniques

Innovative Contact Techniques

Innovative Contact Techniques

Contact Solution Comparison						
 Three primary solutions: Stamped (BI) Probe / Membrane (Test/Sys Test) 						
	Relative Performance	e of Test and	Burn-in Teo	chnologies]	
		Stamped Socket	Probe Pin Socket	Membrane Socket		
al	Current Carring Capacity Amps (higher the better)	~ 1	2+	2+	Relative	
Electrical	Resistance mOhms (lower the better)	50	100	10		
ă	Inductance nH (lower the better)	6	2	0.4	Cost:	
nical	Life of Contact Thousands of cycles	10	250+	25	A < B, C	
Mechnica	Contact Travel	~ 0.2 - 0.5	.50+	0.10		
Production Costs	Assembly of Socket Method - Automation or Manual	А	М	М		
Prod	Cost Contact cost per pin	А	В	С		
3/2008 Contact Pin Complexities: Valuing Performance and Cost 10						

Innovative Contact Techniques

	Contact Solution Comparison						
•	 Three primary solutions: Stamped (BI) Probe / Membrane (Test/Sys Test) 						
		Relative Performance	e of Test and	Burn-in Teo	chnologies	<u>}</u>	
			Stamped Socket	Probe Pin Socket	Membrane Socket		
	al	Current Carring Capacity Amps (higher the better)	~ 1	2+	2+	Relative	
		Resistance mOhms (lower the better)	50	100	10		
	Ĕ	Inductance nH (lower the better)	6	2	0.4	Cost:	
	Mechnical	Life of Contact Thousands of cycles	10	250+	25	A < B, C	
	Mech	Contact Travel	~ 0.2 - 0.5	.50+	0.10		
	Production Costs	Assembly of Socket Method - Automation or Manual	A	М	М		
	Prod	Cost Contact cost per pin	A	В	С		
	3/2008 Contact Pin Complexities: Valuing Performance and Cost 11						

		_	• Use best technical capability	
	Attribute	<u>Optimal</u> <u>pin?</u>	as a technology target	
al	Current Carring Capacity Amps (higher the better)	2+	 Broad product envelope Cost – Establish 	
Electric	Resistance mOhms (lower the better)	35	breakthrough cost/	
	Inductance nH (lower the better)	0.9	performance capability	
Mechnical	Life of Contact	250+	– Lower TCoO – everything	
Mech	Contact Travel	.50+	from price & delivery to probe life & yield	
Production Costs	Assembly of Socket Method - Automation or Manual	А	Design for manufacturing	
Prod C C	Cost Contact cost per pin	D	 Automated assembly 	
– Quality & reliability				

Innovative Contact Techniques

	H-pin Solution						
		Relative Performance	e of Test and	Burn-in Teo	chnologies		
		Attribute	Stamped Socket	Probe Pin Socket	Membrane Socket	<u>H-pin</u>	
	al	Current Carring Capacity Amps (higher the better)	~ 1	2+	2+	2+	
	Electrical	Resistance mOhms (lower the better)	50	100	10	35	
	ă	Inductance nH (lower the better)	6	2	0.4	0.9	
	Mechnical	Life of Contact Thousands of cycles	10	250+	25	250+	
	Mec	Contact Travel (mm)	~ 0.2 - 0.5	.50+	0.10	.50+	
	Production Costs	Assembly of Socket Method - Automation or Manual	А	М	м	А	
	Prod	Cost Contact cost per pin	Α	В	С	D	
3/2	Contact cost per pin 3/2008 Contact Pin Complexities: Valuing Performance and Cost 13						

BITS 2008

Innovative Contact Techniques

H-pin [™] Performance				
s21(f) Insertion Loss	0.5mm H-pin	Performance		
-1 -2 -2	Attribute	Performance		
1	Pin to Pad Resistance	< 40mΩ		
-8	Self-Inductance	0.88 nH		
f [GHz] over so	Single-ended Insertion Loss	< 1dB to 20 GHz		
S11/S22 (f) Return Loss	Single-ended Return Loss	< -10dB to 20 GHz		
	Differential Return Loss	-17.5 dB @ 5GHz		
₩ -20 -25 -30 -35	Differential Insertion Loss	-25dB @ 11.75 GHz		
	Near End Cross Talk	-25dB @ 14.8 GHz		
f [GHz] OVE 552	Far End Cross Talk	-25dB @ 7.5 GHz		
3/2008 Contact Pin Complexities: Valuing Performance and Cost				

Bits 2008

Innovative Contact Techniques

Features:	Benefits:	
0.40mm to 0.70mm Travel	Compliancy for Large Package Warpage	
Flat Spring Rate	Stable Contact Resistance and Force	
BeCu H-PIN™	Solid Beam Electrical Performance	
Stainless Steel Core Spring	Compliancy at High Temperatures (180C+)	
Bandwidth -1dB @ 15GHz	Correlated BI, System Evaluation and Test	
Current Carrying Capacity	Reliable Power and Ground Contact	
High Volume Stamping *	Stocked Inventory and Better Lead Time	
Automated Pin Assembly *	High Volume Capacity and Quality Control	
Reel-to-Reel Pin Insertion *	High Volume Capacity and Ease of Use	
 H-pin reduces TCO Single solution for wide array of applications High volume process Competitive price Automated assembly Short lead times / delivery Solution for wide array of applications Assembly Contact Pin Complexities: Valuing Performance and Cost 		

New Concept in Spring Probe Design

RIKA DENSHI AMERICA, INC.

John Winter – Engineering Manager Larre Nelson – General Manager Amos Friedner – Sales Manager

BITS Workshop March 9-12, 2008

	Outline	
•	Motivation – Improve contact resistance – Improve high frequency response issue Solution – Concept – Customer requirements / wish list – Design Results Benefits	
3/2008	New Concept in Spring Probe Design	2

	Solution - Spring Sleeve)
3/2008	New Concept in Spring Probe Design	5

CONT	CT RESISTANCE COMPARISON	
STANDARD TEST PROBE	TEST PROBE WITH SPRING SI	EEVE
Average Resistance 32.1 mOhms Standard Deviation 47 mOhms	Average Resistance 27.4 mOhms Standard Deviation 14 mOhms	

3/2008

Benefits

- Consistent electrical performance
- Improved current carrying capacity
- Consistent / smooth force vs. deflection
- Enables shorter probe designs
- Can easily be added to most probe designs
- Longer cycle life than bias constructed probe

New Concept in Spring Probe Design

15

Silicon Substrate System in Package

- Silicon serves as chip carrier
- Substrate contains interconnect and passive components
- Built using IC technologies
- SiP assembled on the wafer
- Package often built like wafer level package

03/2008

Non-Contact System-in-Package Testing

Paper #3

4

WiTAP TM Chip WiTAP TM - Wireless Test Access Port		
	 Standard 130nm CMOS Process 1.1mm x 1.2mm JTAG Test controller 3 Independent scan chains 1.8V input supply 1.2V and 1.8V output supplies Intelligent power control 	
03/2008 Non-Contact System-	in-Package Testing 12	

13

WiTAP[™]

- Wireless Test Access Port for SiP
- JTAG and Boundary Scan testing
- Replaces probes with wireless transceivers
- All SiP power supplied through WiTAP[™] chip
- Allows test during build, before final packaging
- Allows testing of hidden test points
- Can be used with stacked chips

```
03/2008
```

Non-Contact System-in-Package Testing

<section-header><section-header><list-item><list-item><list-item><list-item><list-item><complex-block><text>

