INNOVATIVE CONTACT TECHNIQUES

“Contact Pin Complexities: Valuing Performance and Cost”
Paul Schubring
Plastronics

“New Concept in Spring Probe Design”
John Winter, Larre Nelson, Amos Friedner
Rika Denshi America, Inc.

“Non-Contact System-in-Package Testing”
Jeff Hintzke, Chris Sellathamby, Brian Moore
Scanimetrics, Inc.

COPYRIGHT NOTICE
The papers in this publication comprise the proceedings of the 2008 BiTS Workshop. They reflect the authors' opinions and are reproduced as presented, without change. Their inclusion in this publication does not constitute an endorsement by the BiTS Workshop, the sponsors, BiTS Workshop LLC, or the authors.

There is NO copyright protection claimed by this publication or the authors. However, each presentation is the work of the authors and their respective companies: as such, it is strongly suggested that any use reflect proper acknowledgement to the appropriate source. Any questions regarding the use of any materials presented should be directed to the author/s or their companies.

All photographs in this archive are copyrighted by BiTS Workshop LLC. The BiTS logo and ‘Burn-in & Test Socket Workshop’ are trademarks of BiTS Workshop LLC.
Contact Pin Complexities: Valuing Performance and Cost

2008 Burn-in and Test Socket Workshop
March 9 - 12, 2008

Paul Schubring
Plastronics

Agenda

• Introduction
• Technology Trends
• Cost Background
• The Conflict
• The Development Challenge
• Contact Solution Comparison
• Optimal Solution
• H-pin – Solution & Innovation
• Conclusion
Introduction

• Technology trends driving Moore’s law increasingly at odds with the economics needed to sustain past business performance
• As a percent of total product cost, tooling is low, but rising – Cost pressures never greater

Source: Evolution of a Revolution. www.intel.com
Technology Trends

- Package / Application drive secondary requirements
 - Co-planarity
 - Pin Travel
 - Life cycle requirement
 - Etc.

- Pitch / Frequency most compelling technology force
 - Today’s mainstream: 0.6 – 1.0 mm / 1 – 4 GHz
 - 2008 - 2009: 0.5 – 0.8 mm / up to 10 GHz
- Power has stabilized
- C-res – varies by application (BI/Test/Sys Test)

Cost Background

- Tooling Cost per pin improves generation to generation
 - Reached plateau based on capability of current mainstream technology (probe pins) and technology requirements (pitch / electrical)
- Next generation requirements may increase cost / pin price
• Gross margin / ASP pressures have lead to new paradigm
 – BI: Better capability at same cost / Test: Same capability at lower cost
• Need to optimize performance and cost never been greater
• Key concern is where does the envelope stop e.g. where does quality suffer at expense of cost

The Development Challenge

• Zone I: Character Building Zone
 – Often seen by early adaptors
• Zone II: Necessary Evil
 – Product must have the capability
• Zone III: Settle For Zone
 – Low cost, but sacrifice capability e.g. yield, retest, Bin split, etc.
• Zone IV: Cheap and Good
 – Does the grail of contact solutions exist?
• New tooling development = f(cost, resources, capability, lead time…)
 • Too often, mutually exclusive
The Development Challenge

- Customer Desire/Industry Goal: Migrate as many new development programs into a single technology (Zone IV)

Nature of industry is that all 4 zones will exist

- Standardization benefits all
 - Reduces development lead times / resources / costs
 - Enables economies of scale
 - Reduces manufacturing / component / assembly costs
 - Reduces product lead time & inventory costs

Contact Solution Comparison

- Three primary solutions:
 - Stamped (BI)
 - Probe / Membrane (Test/Sys Test)

<table>
<thead>
<tr>
<th>Relative Performance of Test and Burn-in Technologies</th>
<th>Stamped Socket</th>
<th>Probe Pin Socket</th>
<th>Membrane Socket</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current Carrying Capacity (Amps) (higher the better)</td>
<td>~ 1</td>
<td>2+</td>
<td>2+</td>
</tr>
<tr>
<td>Resistance (mOhms) (lower the better)</td>
<td>50</td>
<td>100</td>
<td>10</td>
</tr>
<tr>
<td>Inductance (nH) (lower the better)</td>
<td>6</td>
<td>2</td>
<td>0.4</td>
</tr>
<tr>
<td>Life of Contact (Thousands of cycles)</td>
<td>10</td>
<td>250+</td>
<td>25</td>
</tr>
<tr>
<td>Contact Travel (mm)</td>
<td>~ 0.2 - 0.5</td>
<td>0.5+</td>
<td>0.10</td>
</tr>
</tbody>
</table>

Relative Cost: A < B, C

3/2008 Contact Pin Complexities: Valuing Performance and Cost
Contact Solution Comparison

- Three primary solutions:
 - Stamped (BI)
 - Probe / Membrane (Test/Sys Test)

Relative Performance of Test and Burn-in Technologies

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Stamped Socket</th>
<th>Probe Pin Socket</th>
<th>Membrane Socket</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current Carrying Capacity (Amps, higher the better)</td>
<td>~1</td>
<td>2+</td>
<td>2+</td>
</tr>
<tr>
<td>Resistance (mOhms, lower the better)</td>
<td>50</td>
<td>100</td>
<td>10</td>
</tr>
<tr>
<td>Inductance (nH, lower the better)</td>
<td>6</td>
<td>2</td>
<td>0.4</td>
</tr>
<tr>
<td>Life of Contact (Thousands of cycles)</td>
<td>10</td>
<td>250+</td>
<td>25</td>
</tr>
<tr>
<td>Contact Travel (mm)</td>
<td>~0.2 - 0.5</td>
<td>50+</td>
<td>0.10</td>
</tr>
<tr>
<td>Assembly of Socket Method - Automation or Manual</td>
<td>A</td>
<td>M</td>
<td>M</td>
</tr>
<tr>
<td>Cost</td>
<td>A</td>
<td>B</td>
<td>C</td>
</tr>
</tbody>
</table>

Optimal Solution

- Use best technical capability as a technology target
 - Broad product envelope
- Cost – Establish breakthrough cost/performance capability
 - Lower TCoO – everything from price & delivery to probe life & yield
- Design for manufacturing
 - Automated assembly
 - Quality & reliability
H-pin Solution

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Stamped Socket</th>
<th>Probe Pin Socket</th>
<th>Membrane Socket</th>
<th>H-pin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current Carrying Capacity</td>
<td>~ 1</td>
<td>2+</td>
<td>2+</td>
<td>2+</td>
</tr>
<tr>
<td>Resistance</td>
<td>50</td>
<td>100</td>
<td>10</td>
<td>35</td>
</tr>
<tr>
<td>Inductance (nH, lower the better)</td>
<td>6</td>
<td>2</td>
<td>0.4</td>
<td>0.9</td>
</tr>
<tr>
<td>Life of Contact (Thousands of cycles)</td>
<td>10</td>
<td>250+</td>
<td>25</td>
<td>250+</td>
</tr>
<tr>
<td>Contact Travel (mm)</td>
<td>~ 0.2 - 0.5</td>
<td>.50+</td>
<td>0.10</td>
<td>.50+</td>
</tr>
<tr>
<td>Assembly of Socket Method</td>
<td>A</td>
<td>M</td>
<td>M</td>
<td>A</td>
</tr>
<tr>
<td>Production Cost</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
</tr>
<tr>
<td>Contact cost per pin</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

H-pin™ Innovation

- H-pin: Patented pin technology
 - Electrical path comparable to stamped single beam pin
 - High performance of traditional probe / economies of scale of high volume stamping process
 - Scalable for variety of pitches:
 - 0.5 mm ~1.0+ mm
 - BI / Test / Sys Test / Connector applications
H-pin™ Performance

- H-pin delivers electrical performance through full stroke
- Excellent durability / stress relaxation performance
 - Negligible contact force change after bake
 - Stable lab performance to 250K cycles

Insertion Loss

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pin to Pad Resistance</td>
<td>< 40mΩ</td>
</tr>
<tr>
<td>Self-Inductance</td>
<td>0.88 nH</td>
</tr>
<tr>
<td>Single-ended Insertion Loss</td>
<td>< 1dB to 20 GHz</td>
</tr>
<tr>
<td>Single-ended Return Loss</td>
<td>< -10dB to 20 GHz</td>
</tr>
<tr>
<td>Differential Return Loss</td>
<td>-17.5 dB @ 5GHz</td>
</tr>
<tr>
<td>Differential Insertion Loss</td>
<td>-25dB @ 11.75 GHz</td>
</tr>
<tr>
<td>Near End Cross Talk</td>
<td>-25dB @ 14.8 GHz</td>
</tr>
<tr>
<td>Far End Cross Talk</td>
<td>-25dB @ 7.5 GHz</td>
</tr>
</tbody>
</table>

0.5mm H-pin Performance

March 9 - 12, 2008
H-pin Innovation

<table>
<thead>
<tr>
<th>Features:</th>
<th>Benefits:</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.40mm to 0.70mm Travel</td>
<td>Compliance for Large Package Warpage</td>
</tr>
<tr>
<td>Flat Spring Rate</td>
<td>Stable Contact Resistance and Force</td>
</tr>
<tr>
<td>BeCu H-PIN™</td>
<td>Solid Beam Electrical Performance</td>
</tr>
<tr>
<td>Stainless Steel Core Spring</td>
<td>Compliance at High Temperatures (180°C+)</td>
</tr>
<tr>
<td>Bandwidth -1dB @ 15GHz</td>
<td>Correlated BI, System Evaluation and Test</td>
</tr>
<tr>
<td>Current Carrying Capacity</td>
<td>Reliable Power and Ground Contact</td>
</tr>
<tr>
<td>High Volume Stamping *</td>
<td>Stocked Inventory and Better Lead Time</td>
</tr>
<tr>
<td>Automated Pin Assembly *</td>
<td>High Volume Capacity and Quality Control</td>
</tr>
<tr>
<td>Reel-to-Reel Pin Insertion *</td>
<td>High Volume Capacity and Ease of Use</td>
</tr>
</tbody>
</table>

• H-pin reduces TCO
 – Single solution for wide array of applications
 – High volume process
 • Competitive price
 • Automated assembly
 – Short lead times / delivery

Conclusion

• Product enabling through technical innovation continues as our collective goal
• Technology at any cost is long gone and is now focused on best affordable capability
• Current technologies generally offer either technical capability or cost capability
• New H-pin technology is a new technology that combines both in a single solution
Thank You!

Q & A
New Concept in Spring Probe Design

RIKA DENSHI AMERICA, INC.
John Winter – Engineering Manager
Larre Nelson – General Manager
Amos Friedner – Sales Manager

Outline

- Motivation
 - Improve contact resistance
 - Improve high frequency response issue
- Solution
 - Concept
 - Customer requirements / wish list
 - Design
- Results
- Benefits
Design Objectives

• Contact resistance improvements
 – Improve contact resistance / standard deviation
 – Maintain short operating length
 – Maintain long cycle life
 – Reduce wear due to bias construction
 – Maintain consistent spring force vs. deflection

• Frequency response improvements
 – Improve signal integrity – static and dynamic

Market Requirements

• Short operating length
• Low contact resistance standard deviation
• Long travel
• Consistent and smooth spring force vs deflection
• Higher current carrying capacity
Solution - Spring Sleeve

Standard Probe Bias Probe w/out ball

Bias Ball Probe Probe w/Spring Sleeve
Probe with Spring Sleeve

Contact resistance

CONTACT RESISTANCE COMPARISON

<table>
<thead>
<tr>
<th></th>
<th>STANDARD TEST PROBE</th>
<th>TEST PROBE WITH SPRING SLEEVE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average Resistance</td>
<td>27.8 mOhms</td>
<td>15.7 mOhms</td>
</tr>
<tr>
<td>Standard Deviation</td>
<td>32.9 mOhms</td>
<td>6.7 mOhms</td>
</tr>
</tbody>
</table>
Single ended probe

Coaxial probe with spring sleeve
Single ended x-ray image

Contact resistance

<table>
<thead>
<tr>
<th>STANDARD TEST PROBE</th>
<th>TEST PROBE WITH SPRING SLEEVE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average Resistance</td>
<td>Average Resistance</td>
</tr>
<tr>
<td>32.1 mOhms</td>
<td>27.4 mOhms</td>
</tr>
<tr>
<td>Standard Deviation</td>
<td>Standard Deviation</td>
</tr>
<tr>
<td>47 mOhms</td>
<td>14 mOhms</td>
</tr>
</tbody>
</table>
Test probe without spring sleeve

Test probe with spring sleeve
Benefits

• Consistent electrical performance
• Improved current carrying capacity
• Consistent / smooth force vs. deflection
• Enables shorter probe designs
• Can easily be added to most probe designs
• Longer cycle life than bias constructed probe
Non-Contact System-in-Package Testing

2008 Burn-in and Test Socket Workshop

Chris Sellathamby, Brian Moore, Jeff Hintzke

Purpose

• Show how a wireless testing technique can overcome the multiple testing issues encountered with Silicon-based System in Package (SiP) devices

• Propose applications for wafer-level and package burn-in
Outline

• Silicon-based System-in-Package (SiP) technology
• SiP testing challenge
• Non-contact test access technology
• SiP testing by WiTAP™
• Wafer-level burn-in of SiPs
• Summary

Silicon Substrate System in Package

• Silicon serves as chip carrier
• Substrate contains interconnect and passive components
• Built using IC technologies
• SiP assembled on the wafer
• Package often built like wafer level package
Example of Silicon Based SiP Substrate

Bare SiP Substrate

Silicon Based SiPs

1 Chip
42 passives
3cm x 3cm

1 Chip + Si-based Substrate
1cm x 1cm

2 Chips
86 passives
4cm x 8cm

2 Chip + Si-based Substrate
3cm x 3cm

1 Chip
42 passives
3cm x 3cm

2 Chip + Si-based Substrate
3cm x 3cm

March 9 - 12, 2008
SiP Testing Issues

- Internal nodes hidden
- SiPs don’t use BIST or DFT
 - Individual die often have scan
- Substrate Damage from probing
- 3D
 - Varied topologies
 - Stacked die, wirebonds, flipchip
- Burn-in of assembled devices

Non-Contact Interconnect Technology

- Wireless chip-scale communications
- Distances < 100 µm
- Micro TX/RX on chip
- One TX/RX per I/O
- Fully CMOS compatible
- Power via standard probe, all other signals wireless
- Data scales to > 1 Gbps
Innovative Contact Techniques

Receiver

Data Out
RF (AM) In

Non-contact Test Example

Non-contact JTAG enquiry and response

March 9 - 12, 2008
Alignment Sensitivity

- BER vs. Alignment
- 120um antennas
- 20MHz Clock
- The zone inside the curve has an error rate less than one error per 10^{10} bits.

WiTAP™ Chip

- Standard 130nm CMOS Process
- 1.1mm x 1.2mm
- JTAG Test controller
- 3 Independent scan chains
- 1.8V input supply
- 1.2V and 1.8V output supplies
- Intelligent power control
WiTAP™

- Wireless Test Access Port for SiP
- JTAG and Boundary Scan testing
- Replaces probes with wireless transceivers
- All SiP power supplied through WiTAP™ chip
- Allows test during build, before final packaging
- Allows testing of hidden test points
- Can be used with stacked chips

SiP Testing with the WiTAP™

- JTAG test controller with Integrated RF transceivers
- Assembled on the SiP substrate early in the assembly process
- Test the SiP assembly multiple times during the process
- Higher Yields
- Faster Production Ramps
- Lower manufacturing costs
WiTAP™ Advantage

- Technology is “non-contact” for data signals
 - manufacturing process can be monitored
 - chips can be smaller
 - more chips can be tested at once
- Test when/where no test was possible before
- Reduce SiPs production costs
- Enables wafer-level burn-in
 - Very high parallelism is possible

Probing with WiTAP™
Probecard - Top View

Probecard – Bottom View

Probe Transceivers

Cantilever Power Pins
Package Burn-in Concept

- Wireless channels communicate through package
- Power/Gnd by simplified burn-in socket

Conclusions

- WiTAP™ solution for SiP testing application
- Parallel WiTAP™ SiP x4 in production
- High parallel Wafer-level burn-in possible