

ARCHIVE 2008

THERMAL ISSUES - A BETTER UNDERSTANDING

"Thermal Design and Analysis" Harlan Faller Johnstech International

"Chasing Die Temp—What Impacts the Actual Die Temp in Burn-in? How About the Socket?" Mike Noel, Doug Grover, Doug Laing, Dan Wilcox Freescale Semiconductor

"Metal Interface Materials for Burn-in Applications" Jordan Ross Indium Corporation

> "Optimized Air Cooled Test Socket" Grant Wagner, David Gardell

IBM Microelectronics March 9 – 12, 2008

COPYRIGHT NOTICE

The papers in this publication comprise the proceedings of the 2008 BiTS Workshop. They reflect the authors' opinions and are reproduced as presented , without change. Their inclusion in this publication does not constitute an endorsement by the BiTS Workshop, the sponsors, BiTS Workshop LLC, or the authors.

There is NO copyright protection claimed by this publication or the authors. However, each presentation is the work of the authors and their respective companies: as such, it is strongly suggested that any use reflect proper acknowledgement to the appropriate source. Any questions regarding the use of any materials presented should be directed to the author/s or their companies.

All photographs in this archive are copyrighted by BiTS Workshop LLC. The BiTS logo and 'Burn-in & Test Socket Workshop' are trademarks of BiTS Workshop LLC.

Thermal Issues - A Better Understanding

Thermal Design and Analysis

2008 Burn-in and Test Socket Workshop March 9 - 12, 2008

Harlan Faller, P.E. Johnstech International

Johns<u>tech</u>°

Thermal Issues - A Better Understanding

Thermal Issues - A Better Understanding

Thermal Issues - A Better Understanding

Μ	Mechanisms of Heat Transfer				
• Con		$Q = -kA(\Delta T)/L$ $Q = h_cA(T_s-T_m)$ $Q = \epsilon \sigma F_{1,2}A(T_1^4-T_2^4)$			
ε σ F _{1,2} =	 Thermal (Cross-Se Temperal Length of Coefficier Temperat Emissivity Stefan-Bo Shape Fact 	of Heat Transferred (Watts) Conductivity of Material (W/m ectional Area (m ²) ture Difference (°C) F Heat Transfer Path (m) nt of Convective Heat Transfe ure of Surface and Media (°C y of radiating Surface (dimens oltzmann Constant (5.67x10 ⁻⁸ tor between Surface Area of E mperature of Bodies (Kelvin)	r (W/m-K)) sionless) W/m²-K⁴)		

MATERIAL	CONDUCTIVITY	SPECIFIED HE	ΕΑΤ
Ag	429.0 W/m-K	235 J/Kg-K	
Cu	401.0	384	
Au	319.0	129	
AI	237.0	903	
W	173.0	125	
Ni	90.4	444	
Be-Cu	90.0	420	
Fe	80.4	450	
Pt	71.6	133	
Sn	66.8	227	
Pb	35.3	128	

Thermal Issues - A Better Understanding

Thermal Issues - A Better Understanding

Interface Thermal Resistance of DUT-Contact & Contact-Load Board

Thermal Issues - A Better Understanding

<u>Case St</u>	udy Da	<u>ita</u> :	
Parameters	DUT Pad	<u>Contact</u>	Load Board
Surface Finish (microns)	1.6x10 ⁻⁶	1.6x10 ⁻⁶	1.6x10 ⁻⁶
TanΦ _n	0.15	0.15	0.15
Thermal Cond. (W/m-K)	66.8	90.0	319.0
Mat'l. Hardness (N/m²)	0.5x10 ⁸	5x10 ⁸	5x10 ⁸
Pressure @ Interface	ce 1: 4.5	97x10 ⁷ N	l/m²
Pressure @ Interface	ce 2: 3.7	98x10 ⁷ N	/m²
Other pertinent dat	a on Slid	es 17 &	29
3/11/2008 Thermal De	esign and Analysis		23

Summation of Thermal Resistances for Heat Path

- Thermal Resistance of Interface 1 & Interface 2: θ_{IF1} = (h_{a1} x A_{real IF1})⁻¹ °C/W θ_{IF2} = (h_{a2} x A_{real IF2})⁻¹ °C/W
- Total Thermal Resistance of Interfaces plus Contact:
 - $\theta_{IFs+pin} = \theta_{IF1} + \theta_{pin} + \theta_{IF2}$ °C/W
- Sum Total of Thermal Resistance for DUT/TS/LB: $\theta_{i,amb} = \theta_{i,c} + [\theta_{iE,cn} || \theta_{her}] + \theta_{iE,amb} \circ C/W$
- $\theta_{j-amb} = \theta_{j-c} + [\theta_{IF-cp} || \theta_{hsg}] + \theta_{LB-amb} \circ C/W$ • $\bigoplus_{T_{amb}} T_{amb}$ the Die Temperature is defined as:

 $T_{dle} = T_{amb} + (\theta_{j-amb} \times P_{diss}) C^{\circ}$ $P_{diss} = Heat Conducted away from Device Die$

3/11/2008 Thermal Design and Analysis 24

Thermal Issues - A Better Understanding

Case Study Result Calculations:

Reference: Slide 17, 2.9 Watt, 48 TQFN Device with 2mm, 0.508mm wide "S" Contacts

- 0_{pin} $= 98.8^{\circ}C/W$
- θ_{IF1} $= 2.6^{\circ}C/W$
- $\theta_{IF2} = 15.1^{\circ}C/W$
- θ_{IFs-pin} = 116.5°C/W
- θ_{c-LB} = 10 pins @116.5°C/W || 120°C/W = 10.6°C/W
- $\theta_{j-amb} = \theta_{j-c} + \theta_{c-LB} + \theta_{LB-amb} = 2 + 10.6 + 12 = 24.6^{\circ}C/W$ $T_{die}@+27^{\circ}C = +27 + (24.6 \times 2.9) = 98.3^{\circ}C$
- Measured Test Results gave a Die Temperature of 96°C.
- The difference between Calculated and Measured Values is 2.3°C.

```
3/11/2008
```

Thermal Design and Analysis

25

Thermal Issues - A Better Understanding

Thermal Issues - A Better Understanding

Appendix Physical Properties of C110 Copper & C172 BeCu				
Density	8,940 Kg/m³	8,321.4 Kg/m ³		
Elect. Resistivity	1.71x10 ⁻⁸ Ω-m	7.68x10 ⁻⁸ Ω-m		
Hardness	4-9x10 ² N/mm ²	5-10x10 ² N/mm ²		
Melting Point	1082.8°C	982.2°C		
Specific Heat	384 J/Kg-K	420 J/Kg-K		
Tensile Strength	44 Ksi	90-112 Ksi		
Thermal Cond.	401.0 W/m-K	90.0 W/m-K		
3/11/2008	Thermal Design and Analysis	29		

Thermal Issues - A Better Understanding

	Introduction	
• Burn-in		
- Definition		
	ess of exercising an integra voltage and <i>temperature</i>	ted circuit at
– Challenge	S	
 Knowing 	temperature of the die	
 Minimize 	understress	
– Do we	miss some we should have	e caught?
 Minimize 	overstress	
– Do we	damage some with too mu	ch stress?
March 2008	Chasing Die Temp	2

Thermal Issues - A Better Understanding

Thermal Issues - A Better Understanding

Impact of	f having	a heater		
- Ta - R _{sink} - TIM - Tjc - HTR - R _{socket} Die power Through lid Through socket	75 °C 1 °C/w 0.5 °C/w 6 °C/w 40 w 20 °C/w	75 °C 1 °C/w 0.5 °C/w 5 °C/w 5 w 20 °C/w		
For a 5w package, Tj Error = 8 ∘c				
March 2008	Chasing Die Temp	16		

Thermal Issues - A Better Understanding

Thermal Issues - A Better Understanding

Thermal Issues - A Better Understanding

Impact of Tambient				
– T _{ambient} – C	75 ∘c 1.5 ∘c/w	25 ∘c		
– Tjc – R _{socket}	6 ∘c/w 60 ∘c/w	6 ∘c/w 60 ∘c/w		
 – 5w device, set ca planned Tj of 12 				
 Tj Actual with Ambient 75 Ambient 25 	121 °C 116 °C	Error of 4 °C Error of 9 °C		
Lower values of oven ambient increase calculated error when not factored in				
March 2008	Chasing Die Temp		22	

Thermal Issues - A Better Understanding

Thermal Issues - A Better Understanding

Imp	Impact of R _{socket}					
– Ta – R _{sink} – Tjc – HTR – R _{socket}	75 ∘c 1.5 ∘c/w 6 ∘c/w 40 w 20 ∘c/w	75 ∘c 1.5 ∘c/w 6 ∘c/w 40 w 60 ∘c/w	75 ∘c 1.5 ∘c /w 6 ∘c/w 40 w			
Tj with TjC of 6 Tj with TjC of 2	131 ⁰c 124 ⁰c	144 ∘c 129 ∘c	148 ∘c 132 ∘c			
TjC of 6 Error: TjC of 2 Error:	17 ∘ 4 ∘c					
TjC has large effect, lower values minimize impact of R _{socket}						
March 2008	Chasing Die Temp		26			

Thermal Issues - A Better Understanding

Thermal Issues - A Better Understanding

Thermal Issues - A Better Understanding

Summ • Controlling die temp	ary
 Using thermal diodes most accurate way to temper 	o monitor junction
But	••
If using thermal diod calibrate as much a ambient or, if using model to comper	as possible using heater, apply full
March 2008 Chasing Die	Temp 31

Thermal Issues - A Better Understanding

Metal Interface Materials for Burn-in Applications

2008 Burn-in and Test Socket Workshop March 9 - 12, 2008

Jordan Ross Market Manager Thermal Applications Indium Corporation

Metal Interface Materials for Burn-in Applications

- Indium Corporation
- An Introduction to Metal TIMs
- The Needs in Burn-in
- Thermal Resistance vs. Pressure in Metal TIMs
- Discussion and Questions

3/11/2008

Metal Interface Materials for Burn-in Applications

Paper #3

2

Thermal Issues - A Better Understanding

3

Applications of Solder & Compressible TIM

- TIMs for the burn-in process
 - Indium
 - Indium silver
 - Indium and aluminum
- Solders for evaporators & heaters in the stack up
 - Engineered melting temps for step soldering
 - High conductivity alloys to help efficiency of design

3/11/2008

Metal Interface Materials for Burn-in Applications

Thermal Issues - A Better Understanding

	At	tribu	Ites		
• Hig	mpliant jh conductivit W/mK	y			
•Du	rable, many c	ycles			
• Du Material	Thermal Conductivity (W/mK)	CYCIES Flow Stress (psi)		205	
	Thermal Conductivity	Flow Stress	N	Jage 1	
Material	Thermal Conductivity (W/mK)	Flow Stress (psi)		1000	
Material Indium	Thermal Conductivity (W/mK) 86	Flow Stress (psi) 280		-10-0	
Material Indium Copper	Thermal Conductivity (W/mK) 86 385	Flow Stress (psi) 280 4800		- 100	

Thermal Issues - A Better Understanding

Features of Metal TIMs
for Burn-in
Tabs for attach
Custom shapes
 Custom thicknesses based on application
– Bare die
 Lid package
Custom cladding
Clean
Faster thru put
Longer yields
3/11/2008 Metal Interface Materials for Burn-in Applications 7

Thermal Issues - A Better Understanding

Thermal Issues - A Better Understanding

Thermal Issues - A Better Understanding

Increasing Durability for Cycling, Cleanliness

- Alloy indium with silver
- Aluminum clad for no residue

Thermal Issues - A Better Understanding

Solder in Burn-in Equipment

Alloy	Melting Point (° <i>C)</i>			Comp	osition		
19	60	51	In	32.5	Bi	16.5	Sn
1E	118	52	In	48	Sn		
281	138	58	Bi	42	Sn		
290	143	97	In	3	Ag		
201	199	91	Sn	9	Zn		
238	217	90	Sn	10	Au		
121	221	96.5	Sn	3.5	Ag		
182	280	80	Au	20	Sn		
183	356	88	Au	12	Ge		
184	363	96.8	Au	3.2	Si		
176	382	95	Zn	5	AI		
186	424	55	Ge	45	AI		
3/11/2008	Metal	Interface M	aterials	for Burn-in App	olications		16

Thermal Issues - A Better Understanding

Thermal Issues - A Better Understanding

David Gardell - IBM

Thermal Issues - A Better Understanding

С	Current Test Equipment
	npressed house air
	Laminar Flow Element (LFE) 50MW20-1 ½ hart Flow gage 2110F
– LFE a	accurate to +/- 0.72% of reading
– Accu	rate to +/- 0.1% FS (+/-0.06 cfm)
Absolut	e pressure measured with Meriam gage
Gage air	r pressure – Omega DPG1002
– 0 to 1	100 psi, accuracy = 0.25% FS
 Inlet t 	to UT2 body at barb fitting
SCFM fl correcte	ow rate calculated from measured flow ed for:
	osity, absolute pressure, absolute erature
3/2008	Optimized Air Cooled Test Socket 4

Thermal Issues - A Better Understanding

Thermal Issues - A Better Understanding

Mezzo MJCA Measured with FRT Tool

Thermal Issues - A Better Understanding

Thermal Issues - A Better Understanding

Thermal Issues - A Better Understanding

Microchannel Liquid Cooled Heat Sink for Bare Die

- Nickel plated Cu
- Undersized pedestal
 Polished surface
- Coaxial bellows
 - Fluid inlet & outlet
 - Compliance & die force

3/2008

Optimized Air Cooled Test Socket

26

Thermal Issues - A Better Understanding

Thermal Issues - A Better Understanding

Thermal Issues - A Better Understanding

Thermal Issues - A Better Understanding

<section-header><section-header><image><image><list-item><list-item><list-item><list-item><list-item>

Thermal Issues - A Better Understanding

Conclusions							
were optimi – Smaller dia	ozzle diameter and nozzle-to-o zed ameters result in improved thermal ce at the cost of higher pressure	chip gap					
 Multi-jet arrays outperform single jets on small bare die test modules 							
 On large lidded packages, multi-jet arrays require high airflow for optimum performance Investigate use of high pressure blowers 							
 Air cooled solutions are still inferior to liquid cooled solutions in terms of thermal performance, but can be a good low cost, non contact alternative for low power applications 							
3/2008	Optimized Air Cooled Test Socket	36					