

ARCHIVE 2008

SOCKETS: ON THE FLOOR, IN THE LAB

"Contactor Selection Criteria Overview for RF Component Testing" James Migliaccio, Ph.D RF Microdevices

"Design Optimized, Manufacturing Limited -A 250W Thermal Solution" Trevor Moody, Kevin Hanson, Rick Davis Antares Advanced Test Technologies

"Test Socket Tracking: From Cradle to Grave" Angelo Giaimo IBM Corporation

COPYRIGHT NOTICE

The papers in this publication comprise the proceedings of the 2008 BiTS Workshop. They reflect the authors' opinions and are reproduced as presented , without change. Their inclusion in this publication does not constitute an endorsement by the BiTS Workshop, the sponsors, BiTS Workshop LLC, or the authors.

There is NO copyright protection claimed by this publication or the authors. However, each presentation is the work of the authors and their respective companies: as such, it is strongly suggested that any use reflect proper acknowledgement to the appropriate source. Any questions regarding the use of any materials presented should be directed to the author/s or their companies.

All photographs in this archive are copyrighted by BiTS Workshop LLC. The BiTS logo and 'Burn-in & Test Socket Workshop' are trademarks of BiTS Workshop LLC.

Sockets: On the Floor, In the Lab

RFMD

Contactor Selection Criteria Overview for RF Component Testing

2008 Burn-in and Test Socket Workshop March 9 - 12, 2008

James Migliaccio, Ph.D. RFMD

Customer View of Contactor Supplier

Sockets: On the Floor, In the Lab

RFMD PA TEST
 Tried/used many different contactors for RF test:
Spring Probes
Sliders
Rockers
Interposers
Particle Interconnect
Fibrous Gold Balls
Cantilever
 Most consist of a plastic body holding small metal pieces in place
3/2008 Contactor Selection Criteria Overview for RF Component Testing 5

Sockets: On the Floor, In the Lab

Electrical Requirements

- Typical DUT has low pin count
- Mix of RF & DC pins
- Current requirement can exceed 2A on a pin
- May need to have external components close to the DUT
- Minimal ground inductance preferred
- PCB Real-estate concerns
- RF performance
- ESD

3/2008

Other Considerations

Contactor Selection Criteria Overview for RF Component Testing

- Acquisition Costs
- Existing Relationship
- Anything New and Innovative
- Unique DUT or close relative of existing product
- Custom or standard package?
- Part pad composition
- Accelerated mechanical life testing
- NDA

3/2008

- Changing design is very painful
- Cres is not an important data point. We measure RF performance directly and use an SPC system to determine performance.
- Will go to production

Contactor Selection Criteria Overview for RF Component Testing

Sockets: On the Floor, In the Lab

The Big One -	Cost
 Initial development cost Sockets, load boards Time Production Cost Initial Replacements, spares, training Down time - yield Re-use Know the alternative – price & Service/Quality/Reliability are equalizers 	
- 3/2008 Contactor Selection Criteria Overview for RF Com	ponent Testing 11

3/2008

Session 3

Sockets: On the Floor, In the Lab

From Socket to Application

- Socket maintenance cost is a function of contactor lifetime and repair cost
- This chart ignores the cost of tester down time, labor, spares and first pass yield loss
- Although lifetime cost is a major factor, performance is king
- Not all performance variation is associated with the socket

Contactor Selection Criteria Overview for RF Component Testing

Final application can change everything

Sockets: On the Floor, In the Lab

<section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item>

Sockets: On the Floor, In the Lab

Design Optimized, Manufacturing Limited – A 250W Thermal Solution

2008 Burn-in and Test Socket Workshop March 9-12, 2008

Trevor Moody Kevin Hanson Rick Davis

antares

Advanced Test Technologies

Sockets: On the Floor, In the Lab

Sockets: On the Floor, In the Lab

Sockets: On the Floor, In the Lab

Sockets: On the Floor, In the Lab

Sockets: On the Floor, In the Lab

Sockets: On the Floor, In the Lab

Sockets: On the Floor, In the Lab

<section-header><section-header><section-header><section-header><image><image><image><page-footer>

Sockets: On the Floor, In the Lab

Sockets: On the Floor, In the Lab

Sockets: On the Floor, In the Lab

Test Socket Tracking: From Cradle to Grave

2008 Burn-in and Test Socket Workshop March 9 - 12, 2008

Angelo Giaimo IBM Corporation

HOW DO YOU KNOW ?

- In today's dynamic test mfg environment:
 - How do you know that the Front End Hardware that you just put on the tester is good?
 - How do you know that you won't be wasting precious tester time to figure it out?
 - Can you afford more Testers?
 - Want to lower the cost of test?

March, 2008

Test Socket Tracking: From Cradle to Grave

Paper #3

2

<section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item>

9

SARA: BACKGROUND

- SARA = <u>Socket Analog Resistance Analyzer</u>
- Metrology Tool used to make accurate mass measurements of Socket and Probe Assemblies.
 - Architected for 2,209 usable I/O's (47X47 Array)
 - Pseudo-4 Point Measurements (BiTS 2000 Paper)
- Originally designed as an Engineering Tool.
 - Lab/Development Environment
 - Used for the development, evaluation and test of Test and B/I Sockets.
- HW and SW upgrades for MFG use.

March, 2008

Test Socket Tracking: From Cradle to Grave

<section-header><section-header><text><text><text><text>

Sockets: On the Floor, In the Lab

SARA REPEATABILITY: BEFORE

Sockets: On the Floor, In the Lab

March, 2008

Session 3

Sockets: On the Floor, In the Lab

23

RETURN ON INVESTMENT

- Tester Utilization Savings
- Yield Loss reduction due to defective FEH
- Yield Loss reduction due to downbinning.
- Reduced Manufacturing Operator Labor
- Reduced Test Floor Maintenance Labor

Test Socket Tracking: From Cradle to Grave

