

ARCHIVE 2007

PCB ADVANCEMENTS AND OPPORTUNITIES

"Socket Signal Integrity – Impact From IC & Board"

James Zhou, Jiachun (Frank) Zhou Antares Advanced Test Technologies

"Minimizing Socket & Board Inductance Using a Novel De-Coupling Interposer"

Nicholas Langston, Sr., James Zhou, Hongjun Yao Antares Advanced Test Technologies

"Benchmarking Printed Circuit Board Fabrication Suppliers Using IPC PCQR² Database"

Bill Mack Texas Instruments Inc.

COPYRIGHT NOTICE

The papers in this publication comprise the proceedings of the 2007 BiTS Workshop. They reflect the authors' opinions and are reproduced as presented , without change. Their inclusion in this publication does not constitute an endorsement by the BiTS Workshop, the sponsors, BiTS Workshop LLC, or the authors.

There is NO copyright protection claimed by this publication or the authors. However, each presentation is the work of the authors and their respective companies: as such, it is strongly suggested that any use reflect proper acknowledgement to the appropriate source. Any questions regarding the use of any materials presented should be directed to the author/s or their companies.

All photographs in this archive are copyrighted by BiTS Workshop LLC. The BiTS logo and 'Burn-in & Test Socket Workshop' are trademarks of BiTS Workshop LLC.

PCB Advancements And Opportunities

PCB Advancements And Opportunities

PCB Advancements And Opportunities

A Simple QFN	Package Model
 Two signal paths formed by: PCB pads QFN pads Bondwires Signal pads on silicon Ground loop formed by: PCB ground plane 2x4 via array QFN ground pad Bondwires Ground pads on silicon 	<image/>

PCB Advancements And Opportunities

PCB Advancements And Opportunities

PCB Advancements And Opportunities

PCB Advancements And Opportunities

PCB Advancements And Opportunities

Observations

- QFN package itself has a 1dB bandwidth of 4.9GHz
- cascading S-parameter networks: the overall system bandwidth is equal to or higher than the bandwidth of the QFN package
- 3D fullwave EM analysis: the overall system bandwidth is significantly lower than the QFN package
- Low-speed pin has slightly better performance than the high-speed pin in the overall system (WHY?)
- 3D fullwave analysis reveals additional source of insertion loss from radiation
 - Pins surrounded by all ground pins has much less radiation

PCB Advancements And Opportunities

PCB Advancements And Opportunities

PCB Advancements And Opportunities

PCB Advancements And Opportunities

Package Contactor/socket Main board

Board + Socket + Package

- In order to obtain accurate results on overall system bandwidth, it is highly desirable to analyze the entire system of load board + socket + package
- The input/output ports can be set up at locations of loadboard/package PCB traces, which are good uniform transmission lines
- This approach will guarantee the proper set up of the problem

PCB Advancements And Opportunities

PCB Advancements And Opportunities

PCB Advancements And Opportunities

29

Discussions

- Bandwidth of "package+socket" system is not directly related to the individual subsystem bandwidth
- 3D EM effects must be simulated in one system
- Discontinuities between socket and package can only be accurately modeled in 3D full-wave analysis
- Radiation effects
- Changing pitch will completely change socket characteristic

PCB Advancements And Opportunities

PCB Advancements And Opportunities

Summary

- The discontinuities at PCB-to-socket and socketto-package transitions must be evaluated as an integrated part of the system
- Cascaded network approach may result in large errors if these discontinuities are not modeled properly
- Socket SI performance is NOT just determined by the socket itself; it is dependent on the package and PCB design
- To ensure best accuracy, model the PCB+socket+package as an integrated system using 3D full-wave EM tools

PCB Advancements And Opportunities

PCB Advancements And Opportunities

- Power ground voltage droop (Rail Collapse)
- Simultaneous Switching Noise (SSN Ground Bounce)
- PDS Components
- Board Socket DUT package decoupling components

BiTS 2007

PCB Advancements And Opportunities

PCB Advancements And Opportunities

Benchmarking Printed Circuit Board Fabrication Suppliers Using IPC's PCQR² Database

2007 Burn-in and Test Socket Workshop March 11 - 14, 2007

Bill Mack Texas Instruments Incorporated

Agenda

- Problem Statement
- What is PCQR²
- Test Panel Design & Attributes
- Supplier Results
- Observations
- Actions Taken & Plans

2

PCB Advancements And Opportunities

Problem Statement

A Critical Need for Printed Circuit Boards (PCBs) that are Challenging for Suppliers to Fabricate Resulting In:

Manufacturing Issues, Late Deliveries, and Field Failures

In 2006 it became evident to further evaluate & engage our PCB supplier base:

IPC's PCQR² Database

What is PCQR²?

PCQR² is an IPC Benchmarking Test Standard & Information Database IPC-9151

PCQR² stands for: Process Capability, Quality & Relative Reliability

Standardized Test Panels Provide:

- A level field for comparing impartial results
- Statistical and manufacturing significance
- A design for manufacturability basis
- Analysis reports and an information database

PCB Advancements And Opportunities

5

Test Panel Design & Attributes

16 Standardized IPC Test Panel Designs Available

The study was conducted primarily for Automated Test Equipment (ATE) platform boards:

- Many Layers, 20+
- Thick High Aspect Ratios
- Sequential Lamination
- Microvias, 1 & 2 Layers Deep
- Include Back Drill

IPC-24VB-D Test Panel Chosen

PCB Advancements And Opportunities

Test Panel Design & Attributes

Process Capability

- Via Formation
- Via Registration

Quality

Via Daisy Chain Resistance & Variation

Relative Reliability

- 6 Reflow Passes, Change in Resistance
- <u>Highly Accelerated Thermal Shock (HATS)</u> Cycles to 10% Change in Resistance Cycles to Open Circuit

Paper #3

8

PCB Advancements And Opportunities

Test Panel Design & Attributes Panel Submission Requirements

15 Total Test Panels Fabricated 3 lots of 5 panels

Approval required for any subcontracted step... ...Including supplier-owned facilities off site

Internally Specified Requirements 0.187" thick Material Tg minimum 170° C Surface plating 200 µIN Ni / 50 µIN Au

6 of Our Suppliers Participated in 2006 10

PCB Advancements And Opportunities

Supplier Results Via Formation: Defect Density								
		Defec	ts Per I	Aillion \	/ias			
Via Type	Drill Size (mils)	Aspect Ratio	Supplier A	Supplier B	Supplier C	Supplier D	Supplier E	
Through	10	18:1	2680	1921	1501	1205	8275	
Through	12	15:1	67	696	205	255	1266	
Through	13.5	13:1	34	136	145	42	439	
Through	14.5	12:1	17	146	102	67	378	
Blind	8	6:1	12	66	37	1201	1154	
Blind	10	5:1	12	20	0	18	1106	
Blind	12	4.5:1	12	33	6	24	867	
Blind	13.5	4:1	6	46	6	12	666	
Buried	6	3:1	7	1433	38	128	780	
Buried	8	2.5:1	15	171	30	53	3037	
Buried	10	2:1	0	24	45	23	2896	
Buried	12	1.5:1	15	65	113	7	2351	
Back Drill	10	18:1	3181	3946	Not Built	1214	8029	
Back Drill	12	15:1	633	2068	Not Built	256	846	
Back Drill	13.5	13:1	463	1272	Not Built	41	341	
Back Drill	14.5	12:1	594	1150	Not Built	82	386	

Poor 10 mil Through and Back Drill Yields ¹

PCB Advancements And Opportunities

PCB Advancements And Opportunities

Registration: Drill to Copper Clearance Through Hole Via to Cu Feature Spacing Chart 0.5 Oz Inner Layer Cu, 12:1 Aspect Ratio, Sequential Lam Build: 10 Layer Outers & 4 Layer Inner													
	۷	Vithin 1	12" Cer	nter Par	nel Area	1		0	uter Co	rners o	f 18" x:	24" Par	el
Drill to Cu Clearance (mils):	8	7	6	5	4	3		8	7	6	5	4	3
Board Layers:	1	1	1	1	1	1		L	1	1	1	1	1
Top Lam L2, 4, 6, 8 Middle Lam L11 & 14 Top to Bot Lams L10 & 15 Bottom Lam L17,19, 21, 23	100-90 100-90 100-90 100-90	100-90 100-90 100-90 100-90	100-90 100-90 100-90 79-70	89-80 100-90 100-90 49-40	59-50 89-80 89-80 39 or <	39 or < 69-60 39 or < 39 or <	Supplier A	100-90 100-90 100-90 100-90	100-90 100-90 100-90 89-80	89-80 100-90 89-80 69-60	59-50 89-80 59-50 49-40	39 or < 79-70 39 or < 39 or <	39 or < 49-40 39 or < 39 or <
Top Lam L2, 4, 6, 8 Middle Lam L11 & 14 Top to Bot Lams L10 & 15 Bottom Lam L17,19, 21, 23	100-90 100-90 100-90 100-90	100-90 89-80 89-80 100-90	69-60 89-80 69-60 89-80	49-40 79-70 49-40 59-50	39 or < 49-40 39 or < 39 or <	39 or < 39 or < 39 or < 39 or <	Supplier B	79-70 100-90 79-70 89-80	49-40 89-80 69-60 79-70	39 or < 69-60 59-50 49-40	39 or < 49-40 39 or < 49-40	39 or < 39 or < 39 or < 39 or <	39 or < 39 or < 39 or < 39 or <
Top Lam L2, 4, 6, 8 Middle Lam L11 & 14 Top to Bot Lams L10 & 15 Bottom Lam L17,19, 21, 23	100-90 100-90 100-90 100-90	100-90 100-90 100-90 100-90	100-90 100-90 79-70 89-80	79-70 79-70 69-60 69-60	49-40 49-40 49-40 39 or <	39 or < 39 or < 39 or < 39 or <	Supplier C	89-80 100-90 100-90 69-60	69-60 89-80 79-70 49-40	<mark>49-40</mark> 69-60 69-60 39 or <	39 or < 49-40 49-40 39 or <	39 or < 39 or < 39 or < 39 or <	39 or < 39 or < 39 or < 39 or <
Top Lam L2, 4, 6, 8 Middle Lam L11 & 14 Top to Bot Lams L10 & 15 Bottom Lam L17,19, 21, 23	100-90 100-90 100-90 100-90	100-90 100-90 100-90 100-90	100-90 100-90 100-90 100-90	100-90 100-90 89-80 79-70	89-80 79-70 79-70 59-50	59-50 49-40 49-40 39 or <	Supplier D	100-90 100-90 79-70 79-70	89-80 89-80 69-60 59-50	69-60 69-60 49-40 39 or <	49-40 49-40 39 or < 39 or <	39 or < 39 or < 39 or < 39 or <	39 or < 39 or < 39 or < 39 or <
Top Lam L2, 4, 6, 8 Middle Lam L11 & 14 Top to Bot Lams L10 & 15 Bottom Lam L17,19, 21, 23	79-70 3 89-80 79-70 79-70	39 or < 79-70 59-50 59-50	39 or < 69-60 39 or < 39 or <	39 or < 49-40 39 or < 39 or <	39 or < 39 or < 39 or < 39 or <	39 or < 39 or < 39 or < 39 or <	Supplier E	39 or < 79-70 59-50 39 or <	39 or < 59-50 39 or < 39 or <	39 or < 49-40 39 or < 39 or <	39 or < 39 or < 39 or < 39 or <	39 or < 39 or < 39 or < 39 or <	39 or < 39 or < 39 or < 39 or <
Percent Vield: 100-90 89-80 79-70 69-60 59-50 49-40 $a=39$													

PCB Advancements And Opportunities

PCB Advancements And Opportunities

PCB Advancements And Opportunities

PCB Advancements And Opportunities

PCB Advancements And Opportunities

Supplier Relative Results Through Hole Structure Dashboard							
	Defect Density	Registration	Resistance Values	Resistance Variation	Reflow Reliability	Thermal Shock	
SUPP A	BEST	BEST	ок	MIDDLE	MIDDLE	MIDDLE	
SUPP B	MIDDLE	MIDDLE	ок	MIDDLE	WORST	WORST	
SUPP C	MIDDLE	MIDDLE	HIGH	WORST	BEST	BEST	
SUPP D	BEST	BEST	ок	BEST	WORST	WORST	
SUPP E	WORST	WORST	ок	MIDDLE	WORST	WORST	
No	suppli	ier exc	elled ir	n all tes	st aspe	Cts 26	

PCB Advancements And Opportunities

Actions Taken & Plans Suppliers:

- Analysis report assessments
- Corrective actions
- New equipment purchases
- Process alignments

Paper #3

28

PCB Advancements And Opportunities

29

Actions Taken & Plans

Supplier Equipment Implementations

- On-site Laser Drill
- In-line Develop / Etch / Strip
- Reverse Pulse Plating
- Laser Direct Imaging
- Additional Drills & Presses
- Vision Drilling
- Post-Etch Punch

Actions Taken & Plans

Internal:

- Design Rules & Protocol
- 2nd Test Submissions in 2007
- Overseas Supplier Evaluations
- Burn-in Board Supplier Study

In Conclusion: The PCQR² Database Provides an Effective, Quantified, & Impartial Base to Compare PCB Fabrication Suppliers 30

PCB Advancements And Opportunities

AcknowledgementsMike KorsonTI Make PCB DevelopmentDavid ReedTI Make InfrastructureDavid WolfConductor Analysis TechnologiesTimothy EstesConductor Analysis TechnologiesPC PCQR² DatabaseParticipating TI PCB Supplier Partners

Additional Information & Contacts

PCQR ² :	www.pcbquality.com	
CAT Inc:	www.cat-test.info	
IPC:	www.ipc.org	
HATS:	www.hats-tester.com	
David Wolf, Co	nductor Analysis Technologies I dave.wolf@cat-test.info	nc.
Bill Mack, Texa	s Instruments Inc. bigm@ti.com	32