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Because all solid surfaces are rough
on the microscale, two mating solid
surfaces make contact only where the
peaks of small surface asperities
(roughness) touch one another. 
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TRUE AREA OF MECHANICAL 
CONTACT

steel optical flat applied mechanical load

rough tool-steel 
plate
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Steel optical flat after contact with sand-blasted tool-steel, under
various loads.
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cross-sectional 
area A

applied load F

compressive mechanical
stress =  F / A

[ lbs / in2 ]
[ N / m2]

[ kg / mm2]

mechanical stress
is a pressure
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cross-sectional 
area A

applied load F

if  F / A < Yield Strength,
the metal deform 

elastically
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compressive stress
larger than the
Yield Strength
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Since all contacting asperities deform plastically, then 
the contact force Fj acting on the surface Aj of the jth
asperity is

Fj =  Yj Aj

where Yj =  yield stress of contact material
[  kg mm-2 ]

It turns out  Yj =  H   =  Vickers’ or Knoop
microhardness [ kg / mm2 ]
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current flow lines

Electrical constriction 
resistance RC presented
by a circular constriction
of radius a is

RC =  ρ / 2a
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For a multispot contact, the constriction resistance
is well approximated as

RC =  ( ρ / 2 ) [ π H / F ]1/2

where H    =  Vickers’ or Knoop microhardness
[ kg / mm2 ]

ρ =  average resistivity of contacting
materials

F     =  contact load [ kg ]

CONSTRICTION RESISTANCE:
MULTISPOT CONTACTS
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Connector Design: Fundamental Criteria
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CONSTRICTION RESISTANCE

Contact resistance versus contact load for a copper contact with
H = 120 kg mm-2. Resistivity ρ =  1.65 x 10-8 Ω m.
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d

CONTACT RESISTANCE

There is also a contact resistance RF due to the presence
of oxide or other contaminant films on the mating 
surfaces :

RF =  ρcont d / A

where A    =   area over of surface film
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CONTACT RESISTANCE:
METAL-TO-METAL VERSUS FILM-TO-FILM

OXIDE FILM THICKNESS  =  2 nm

Resistance of        Film   
Type of Metallic Metal-to-Metal                                   Resistance          

Junction a-Spot
( Ω ) ( Ω )

Cu2O                     Al2O3

copper-copper 1.7 x 10-3 0.18

aluminum-aluminum 2.6 x 10-3 23.2

Total contact area = 1 cm2

Radius of a-spot = 10 µm
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Total contact resistance  
RT =   RC +    RF
RT =   ( ρ / 2 ) [ π H / F ]1/2 +   ρcont d / A

oxide film
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RF =  ρcont d / A
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CONTACT RESISTANCE:
Cu-Cu Contact Spot 10 µm radius covered with Oxide Film
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SURFACE OXIDE FILMS

To enhance electrical contact reliability 

• do not tolerate surface 
contaminant films i.e. do not 
expect conduction though them

• abrade/remove all surface films,
in particular oxide layers
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GROWTH OF 
INTERMETALLIC 

COMPOUNDS
The width X of an intermetallic
layer or an interdiffusion band
increases with time t as

X2 =  kt
with k  =  interdiffusion constant

=  k0 exp( - Q / RT )

Q  =  activation energy
R  =  gas constant
T  =  absolute temperature
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INTERMETALLICS FORMATION

Cu3Sn
Cu6Sn5

Intermetallics growth at a copper/tin interface.

cracks
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EFFECTS OF INTERDIFFUSION
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EFFECTS OF INTERDIFFUSION
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EFFECTS OF INTERDIFFUSION
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TEMPERATURE IN AN
ELECTRICALLY-HEATED CONTACT
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TEMPERATURE IN AN
ELECTRICALLY-HEATED CONTACT

The contact spot temperature 
depends only on the potential drop 

across the contact.
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MAXIMUM VOLTAGE-DROP IN AN
ELECTRICAL CONTACT

Melting of a contact spot is determined by the voltage-drop across the 
contact, not the electrical current

Metal Softening Voltage Melting Voltage 
( V ) ( V )

Al 0.1 0.3
Fe 0.19 0.19
Ni 0.16 0.16
Cu 0.12 0.43
Zn 0.1 0.17
Ag 0.09 0.37
Cd 0.15
Sn 0.07 0.13
Au 0.08 0.43
Pd 0.57
Pb 0.12 0.19
60Cu, 40Zn 0.2
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TEMPERATURE IN AN
ELECTRICALLY-HEATED CONTACT

thermal risetime τ of a contact spot of radius “a“

τ =  C a2/ 4λ
where C =  conductor heat capacity

λ =  thermal conductivity

For copper, C  =  3.44 J cm-3 0C-1

λ =  4 W cm-1 0C-1

so that τ =   2.2 x 10-7 s for a contact spot
with a = 10 µm
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Schematic variation of contact spot temperature associated with variations
in voltage-drop across the contact, at a signal frequency of 1 kHz.
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CONSTRICTION RESISTANCE:
Effect of Signal Frequency

Under conditions of DC current flow :
constriction  resistance   RC =   ρ / 2a

ρ =  resistivity

36© Timron Scientific Consulting Inc.

EFFECTS OF FREQUENCY:
THE SKIN EFFECT

Under alternating current (AC) conditions, current penetrates into a 
conductor to an electromagnetic “penetration depth” δ

δ =  [ ρ / π f µ0 ]1/2

ρ =   resistivity
µ0 =   magnetic permeability of

free space
f =   excitation frequency in Hz

current streamlines
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Variation of Skin Depth with Frequency
for a Metal of Resistivity 3 x 10-8 Ω m

f Skin Depth δ
[ Hz ]          [ µm ]

60 11254
103 2757
104 872
105 276
106 87
107 28
108 8.7
109 2.8

EFFECTS OF FREQUENCY:
THE SKIN EFFECT
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EFFECTS OF FREQUENCY

2a’

constriction of 
radius a

( Rext – a’ )

Rext =    outer radius of “External” ring

a’ =    inner radius of “External” ring
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Total  Connection Resistance  =  Constriction Resistance  
+  Resistance of “External”Ring 

Resistance of “External” Ring =  ( ρ / 2π δ ) ln ( Rext / a’ ) 

δ =    electromagnetic penetration depth
Rext =    outer radius of “External” ring
a’ =    inner radius of “External” ring
ρ =   resistivity

EFFECTS OF FREQUENCY
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CONSTRICTION RESISTANCE
AT HIGH FREQUENCIES
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Signal 
Frequency f

[Hz]

Constriction
Resistance

[mΩ]

Connection
Resistance

[mΩ]

107 2.2 3.2

108 1.4 4.7

109 1.0 11.2

CONSTRICTION RESISTANCE
VS. 

CONNECTION RESISTANCE
AT HIGH FREQUENCIES

ρ =   3 x 10-8 Ωm
a =   5 µm
Rext =  100 µm.
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average surface
separation d

interface capacitance C  =  εr ε0 A / d

A =  area of nominal contact
ε0 =  permittivity of free space ( 8.85 x 10 –12 F / m )
εr =  relative permittivity of material in interfacial gaps

Example:     A  =  1 mm2

εr =  3
d =  0.1 µm

C  =  2.7 x 10-10 Farad

impedance  at 109 Hz  ( 2πfC )-1 =  0.6 Ω
impedance  at 1010 Hz  ( 2πfC )-1 =  0.06 Ω
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ELECTRICAL CONTACT RESISTANCE : 
SMALL CONTACT LOADS
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The expression for the resistance through a small constriction 
of radius “a” becomes

RB = Γ ( K ) ( ρ / 2 a )   + C / a2

temperature
independent

Sharvin
resistance

temperature
dependent
classical

resistance

BREAKDOWN OF CLASSICAL
ELECTRICAL CONTACT THEORY

where 
K  =  l / a  ( l  =  electron mean free path)
Γ ( K ) =  varies from 1 to about 0.7 as K varies from  0 to ∞
C  =  a constant that depends on the  contact material
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if  a voltage V is applied across a small
contact, only the voltage V R1 / ( R1 + R2 ) 

developed across R1, causes a 
temperature rise in the contact.

temperature
independent

temperature
sensitive

BREAKDOWN OF CLASSICAL
ELECTRICAL CONTACT THEORY
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Constriction Resistance for Cu
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DEGRADATION MECHANISMS
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Tribology

Most common types of wear in metal sliding :

I. Abrasive Wear – relevant only to high power
connectors

II. Adhesive Wear

III. Fretting Wear

IV. Erosion - generally not relevant to connectors

V. Lubricated Wear - not relevant to connectors
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Adhesive Wear
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Tribology: Adhesive Wear

Wear rate and electrical contact
resistance of a leaded α / β brass
pin against a hard stellite ring.
Note the sharp transition in wear
rate.

severe wear

mild wear
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Tribology: Adhesive Wear
Mild Wear Severe Wear

Metal Transfer small large

Wear Debris small large

Contact Wear              relatively symmetrical,  generally 
depends on sliding unsymmetrical

frequency

Effect on Surface smoothing, roughening
subsurface deformation,       subsurface 

little hardening deformation,
increased 
hardness 
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Tribology: Adhesive Wear
Transition Loads

Pure Gold Hard Gold

Clean Surface 5 g 10 g

Contaminated 10 – 50 g 25 – 300 g

Lubricated 100 – 500 g 500 – 2000 g
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Tribology:
Adhesive
Wear

Wear indices from unlubricated adhesive wear runs: (a), (c )  pure  gold  with 
and without 2.5 µm Ni underplate; (b), (d) hard cobalt gold, with and without 
2.5 µm Ni underplate.
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Tribology: 
Adhesive Wear

Effect of surface roughness on 
Wear Index, using solid gold 
riders :
(a)no underplate
(b)1.5 µm Ni underplate .
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Tribology:
Fretting Wear

metal debris particles

oxidized particles
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Tribology: Fretting Wear

Fretting Wear  is  generated  by  small-amplitude  movement 
leading  to  the  formation  of  small   debris   particles   at a 
mechanical interface.  In electronic connectors, the amplitude
of this micromotion ranges from a few µm to about 100 µm.   

Micromotion is caused by external vibrations or by changing 
temperature   due   to   differences    in    thermal   expansion 
coefficients of the mating materials.  

Oxidation of fretting  debris   leads   to   increased   electrical 
contact resistance.
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Tribology: Fretting Wear

(a)

(b)

(a) Fretting damage on a tin electroplate surface,
(b) Cross-sectional view of (a).
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Tribology: Fretting Wear

Contact resistance versus number of fretting cycles in dry and 
lubricated tin-tin contacts
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Tribology: Fretting Wear 

Typical contact resistance variations due to fretting at 50 g and 8 Hz 
with a 20 µm wipe.  Curve I – unacceptable, curve II – acceptable,
curve III – best.
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Tribology: Fretting Wear

Silver 

Silver  is  the  most  stable   material  in  fretting,  since  it  is 
relatively wear resistant, does not oxidize readily,  and  does not 
form frictional polymers.  It displays excellent behaviour when   
mated  to  itself.    Silver  is  prone  to  tarnish  in  the presence 
of  even  minute  amounts  of   sulfur  and  chlorine 
compounds.    This  limits  the  use   of   silver   in   electronic 
connectors.

Silver is widely used as a finish on aluminum busbar contacts.
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Tribology: Fretting Wear

Contact resistance behaviors due
to fretting, in various materials.  
Load of 50 g, 20 µm displacement
at 4 – 8 Hz.:
I     - solid Ni on Ni-electroplate

2.5 µm thick on Cu
- solid Pd on Pd-clad 5 µm  

thick on Ni
- solid Cu on solid Cu

II   - solid Au on solid Cu
III  - solid Au on Ni-electroplate 

2.5 µm thick on Cu
- solid Au on Co/Au-electroplate

0.6 µm thick on Ni electroplate
on Cu

- solid Ag on solid Ag.
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Tribology: Fretting Wear

Contact resistance versus fretting cycles, 150 g, 8 Hz, 10 µm wipe.
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Fretting at Tin – Gold Interfaces

Results of fretting tests conducted on degreased tin, gold, palladium and silver
surfaces mated to degreased tin surfaces.

65© Timron Scientific Consulting Inc.

Results of fretting tests conducted on tin, gold, palladium and silver surfaces 
mated to tin surfaces lubricated with an anti-fretting lubricant.

Fretting at Tin – Gold Interfaces
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Tribology: Fretting Wear

Gold 
Gold approaches silver in its stability.  Although it is known 
that has organic materials, aerosols and other contaminant 
layers accumulate on gold surfaces to increase contact 
resistance, these contaminants are usually eliminated by 
rubbing.

It has been claimed that traces of polymer form when gold 
contacts are rubbed together in benzene vapor or immersed 
in an oil.  No  deleterious effect of this polymer on contact  
resistance has been detected.   



20062006 Tutorial 1

March 12 - 15, 2006 12

67© Timron Scientific Consulting Inc.

Contact reliability of 0.5 µm pure gold on copper, with and without a Ni
underplate.  Contact load 100 g. [ Contacts are unsatisfactory if contact 
resistance >  1 mΩ ].

Effects of Heating

68© Timron Scientific Consulting Inc.

Thermal stability of contact resistance of 50 µm gold electroplate on
copper,  aged at 2000C.  Effects of Co and Ni additions of 0.25 wt%.

Effects of Heating
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OXIDATION / CONTAMINATION  IN AIR

THICKNESS (nm)
copper:- oxide forms immediately

- thickness depends on T0C 103 h     105 h
temperature

20    2.2 4
55 3.5 17
85 8.7 69

100 15.0 130

tin: - oxide growth is initially slow 20           4.2 6.1
- depends on temperature 55 10.3       14.6

85         18.8 26.0
100 25.0       36.0

Cu

Sn

70© Timron Scientific Consulting Inc.

THICKNESS (nm)

T0C 103 h     105 h

nickel:- oxide growth 20 1.6 15.0
is self-limiting 55 2.1 21.0

- weak dependence 85 2.7 27.0
on temperature 100 3.4 34.0    

silver:- Ag2S formation
- formation of Ag2O in presence of ozone

OXIDATION / CONTAMINATION  IN AIR

Ni
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Reactivity of Connector Materials
Material Reactivity to Environmental

Pollutants

Ag, Pd-Ag, Au-Ag, S, H2S, Cl2
Au-Cu 

Pd, Pd-Cu NO2, SO2, Cl2

Cu S, SO2, H2S, Cl2

Ni SO2, NO2, Cl2

Sn, Sn-Pb NO2, SO2, Cl2, H2O

72© Timron Scientific Consulting Inc.

Contact resistance due to formation of surface films on Ag, Cu and 
Ni in N2-O2-SO2-S8-H2O mixtures at 300C.

Film Formation in a
Harsh Environment
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Pore Corrosion

75© Timron Scientific Consulting Inc.

Electroplate
Porosity

Dependence   of   pore 
density on electroplate 
thickness, for  various
CLA   (  Center  Line 
Average )   values   of 
Substrate roughness.
Pure gold  on  1.5  µm 
thick Ni underplate on 
copper.
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Galvanic Corrosion
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Pore Corrosion

Corrosion through pores in gold electroplate on copper. 78© Timron Scientific Consulting Inc.

Example of copper sulfidation through a pore in a gold layer [ from 
Sun, Moffat, Enos and Glauner, Sandia National Labs, IEEE Holm
Conf. Electrical Contacts, September 2005 ].

Cu2S

Copper

Au

Pore Corrosion
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Connector Testing: 
Mixed Flow Gas (MFG) Composition
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Film Formation in a Corrosive Environment
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Film Formation in a Corrosive Environment
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SIGNIFICANCE OF BURN-IN IN 
ELECTRICAL CONTACTS 
Selected Burn-In Methods 

• Pass a large current through contacts
possible beneficial effects:
- slight overheating of contact spots, causing 

negligible metallurgical effect, may soften
contact spots and increase the true contact 
area to reduce contact resistance 

- slight differential expansion in contact region
may cause local abrasion of surface contaminant
films and reduce contact resistance
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SIGNIFICANCE OF BURN-IN IN 
ELECTRICAL CONTACTS 
Selected Burn-In Methods 

• Pass a large current through contacts
possible deleterious effects:
- overheating of contact spots with possible

metallurgical changes in the contact region
- increased oxidation

- overheating of contact springs or connector
components with possible decrease in contact
force due to stress relaxation or metal-creep
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• passing a large burn-in current through some 
types of contacts, such as those using low melting-
point materials, may be particularly deleterious to
contact reliability
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SIGNIFICANCE OF BURN-IN IN 
ELECTRICAL CONTACTS 
Selected Burn-In Methods 

• Reciprocating motion of pin in socket while passing
current, but without contact disconnect
major beneficial effect:
- disperse surface contaminant films and reduce

contact resistance
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SIGNIFICANCE OF BURN-IN IN 
ELECTRICAL CONTACTS 
Selected Burn-In Methods 

• Reciprocating motion of pin in socket while passing
current, but without contact disruption
possible deleterious effects:
- generate unwanted mechanical wear on contact 

surfaces and removal of thin protective electroplates
- increase a permanent set in receptacle springs

- possible arcing

- other effects
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SUMMARY

Major Parameters and Mechanisms 
Affecting Contact Resistance

1. SurfaceRoughness:  Asperity density and shape can 
optimize connector function

2. Surface Hardness:  Hardness determines real contact area

3. Interdiffusion:  Usually deleterious to contact performance

4. Electroplates:  To modify surface hardness and provide 
protection against mechanical wear and corrosion; 
underplates reduce interdiffusion between electroplates 
and substrate
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Major Parameters and Mechanisms 
Affecting Contact Resistance

5. Surface Insulating Films:  Usually deleterious to contact
performance since they add to contact resistance; these 
films may increase susceptibility to fretting corrosion

6. A-spot Temperature:  Controls interdiffusion processes and 
other mechanisms such as oxidation and corrosion rates; 
elevated temperatures are usually deleterious to contact 
performance.  Temperature can be evaluated from the V-
T relation

SUMMARY
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Major Parameters and Mechanisms 
Affecting Contact Resistance

7. Signal Frequency:  The “skin effect” begins to have a 
noticeable effect on connection resistance at a frequency of 
a few MHz

8. Small Contacts:  Classical contact theory breaks down for 
a-spot radii smaller than a few hundred nanometers

9. Contact Degeneration Mechanisms: Oxidation, corrosion,
fretting corrosion, intermetallic growth, differential 
thermal expansion etc.. eventually limit connector life.

SUMMARY
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