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Problem:Problem: Thermal Losses at the DUTThermal Losses at the DUT

Thermal Loss – How much could you lose over time?
BGA ZDP Testing
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DUT Thermal Management

Device Thermal Losses During TestDevice Thermal Losses During Test

Focus Areas for Root CauseFocus Areas for Root Cause

Various Approaches for Limiting LossesVarious Approaches for Limiting Losses

Sample Test Data SetsSample Test Data Sets

ConclusionsConclusions

SummarySummary
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Root Cause AnalysisRoot Cause Analysis

Thermal Losses Occur at the Point of Contact of the Thermal Losses Occur at the Point of Contact of the 
Device Lead to the Socket Probe.Device Lead to the Socket Probe.

There are a Number of Variables Involved with this There are a Number of Variables Involved with this 
Phenomenon.Phenomenon.

Most All Device Handling Solutions Need Additional Most All Device Handling Solutions Need Additional 
Features That Maintain DUT Temperature from Soak Features That Maintain DUT Temperature from Soak 
Through Test.Through Test.

Devices Under Functional Test that Dissipate Devices Under Functional Test that Dissipate 
Minimal Power (<100mW) are Most Vulnerable.Minimal Power (<100mW) are Most Vulnerable.
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Root Cause:Root Cause: Thermal Losses at the DUTThermal Losses at the DUT

Contactor Device       
SupportElements:

Target Device Assembly
Flux Path From Source 

(Device Contact > Pogo 
Pin > Loadboard 
Infrastructure).

Large Temperature 
Gradient Results in a 
More Difficult Control for 
DUT Temperature.

Tester Air Purge Effects 
on Backside of the 
Loadboard Increases Heat 
Transfer Efficiency.

Loadboard 

Silicon Die 
Device 
Plastic 
Body

Sample BGA Device in the Socket
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Contactor Probe – Conditioned Air Delivery
Sample BGA Device in the Socket

Silicon Die 
Device 
Plastic Body

Elements:
Target Device Assembly
Flux Path From Source 

(Device Contact > Pogo 
Pin > Loadboard 
Infrastructure).

Temperature Gradient 
Key to Maintaining DUT 
Temperature.

Tester Air Purge Effects 
on Backside of the 
Loadboard Influences 
Gradient and Diffuses 
Ability to Control DUT 
Temperature. 

Loadboard Contactor Device     
Support     

Conditioned 
Air Delivery
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Applied Convection and Contactor ProbesApplied Convection and Contactor Probes
Comparative Geometry's of Differing Device 

and Probe Configurations for Convection

Component in Heat 
Transfer Path

Convection Assist 
from Conditioned 

Source

Loadboard Xsection

BGA & Pogo
Leadframe & Short 

Probe
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Effects of  Contactor Probe ConditioningEffects of  Contactor Probe Conditioning

125°C Testing w/Purge @100 SCFH
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DUT Package DUT Package –– Applied Thermal LoadApplied Thermal Load

Elements:
Target Device Assembly
Flux Path From Source 

(Device Contact > Pogo 
Pin > Loadboard 
Infrastructure).

Temperature Gradient 
Key to Maintaining DUT 
Temperature.

Purge Effects on 
Backside of the Loadboard 
Influences Gradient and 
Changes Device Response 
in the Socket.

Silicon Die 
Device 
Plastic Body

Contactor Device
SupportLoadboard 

Applied 
Thermal Load

Sample BGA Device in the Socket
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Comparison of DUT Air Impingement and Contactor Comparison of DUT Air Impingement and Contactor 
Probe ConditioningProbe Conditioning

125°C Air Injection - 30SCFH Purge
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DIB Backside DIB Backside –– Sealed Cover (Purge Cap)Sealed Cover (Purge Cap)

Elements:
Target Device Assembly
Flux Path From Source 

(Device Contact > Pogo 
Pin > Loadboard 
Infrastructure).

Temperature Gradient 
key to  maintaining DUT 
Temperature.

Cover protects area 
adjacent to test sites from 
extraneous air currents 
and allows control of 
loadboard gradient.

Contactor Device     
SupportLoadboard 

Silicon Die 
Device 
Plastic Body

Sample BGA Device in the Socket
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Loadboard Temperature Gradients & Effects on the DUTLoadboard Temperature Gradients & Effects on the DUT

Real Time Device Response w/Loadboard Temp Shift
x4 Application

90

95

100

105

110

115

120

125

130

135

1 14 27 40 53 66 79 92 10
5

11
8

13
1

14
4

15
7

17
0

18
3

19
6

20
9

22
2

23
5

24
8

26
1

27
4

28
7

30
0

31
3

32
6

33
9

35
2

36
5

37
8

39
1

40
4

41
7

43
0

44
3

45
6

46
9

Time = sec

Te
m

p 
°C

Dev A1 Dev A2 Dev B1 Dev B2 Zone3 Ref LDBD Temp

Backside 
LDBD Temp

Device 
Insertion 

Point
Device Temp Shift

Control 
Temp Ref

Increasing 
Gradient



20062006 Session 7

March 12 - 15, 2006

Paper #1

7

Thermal Management Advances

Page 13

Effects of Purge Air w/ MultiEffects of Purge Air w/ Multi--site Test Applicationssite Test Applications
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Dynamic Test Results Using Embedded RTD Test Dynamic Test Results Using Embedded RTD Test 
VehiclesVehicles

Test 16A : SP=125 : x8 RTD Plunge Test : Purge = 50 scfh
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Summary of Approaches and ConclusionsSummary of Approaches and Conclusions

Contactor Probe ConditioningContactor Probe Conditioning
Optimal in minimizing transient effects from Optimal in minimizing transient effects from 
temperature mismatches from the DUT contacts and temperature mismatches from the DUT contacts and 
test probes.test probes.

DUT Applied Thermal LoadDUT Applied Thermal Load
In the convection mode, a small contributor to In the convection mode, a small contributor to 
overcoming the heat transfer effects from the socket overcoming the heat transfer effects from the socket 
and loadboard.and loadboard.

DIB Cover (Purge Cap)DIB Cover (Purge Cap)
Effective in maintaining the gradient across the Effective in maintaining the gradient across the 
contactor probes and loadboard.contactor probes and loadboard.
Eliminates extraneous air currents induced by test Eliminates extraneous air currents induced by test 
head purge and test cell environment.head purge and test cell environment.

Page 16

DUT Thermal Management DUT Thermal Management -- SummarySummary

Contactor probe conditioning in conjunction with a Contactor probe conditioning in conjunction with a 
DIB cover (purge cap) has been found as the DIB cover (purge cap) has been found as the 
combination of choice.combination of choice.

All applications vary and do require characterization All applications vary and do require characterization 
for optimal operating setup.for optimal operating setup.

Test site thermal solutions have been in service since Test site thermal solutions have been in service since 
mid 2002. Current installed base (>200) covering x1 mid 2002. Current installed base (>200) covering x1 
thru x16 test applications in engineering and thru x16 test applications in engineering and 
production sites include all handlers developed by production sites include all handlers developed by 
Delta Design.Delta Design.
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DUT Thermal ManagementDUT Thermal Management

Questions?
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Thermal Control Units: Thermal Control Units: 
Development of an Analytical Model andDevelopment of an Analytical Model and
Experimental Validation to Optimize Experimental Validation to Optimize the the 

Voltage InputVoltage Input

Sudhir Kumar (Presenter), Khaled Elmadbouly, Praba PrabakaranSudhir Kumar (Presenter), Khaled Elmadbouly, Praba Prabakaran
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Thermoelectric Cooler Basics

Thermoelectric Coolers 
(TECs) are solid state 
heat pumps working on 
the Peltier effect.

It contains an array of p 
and n-type semiconductor 
pellets, connected 
electrically in series.

A DC current or voltage is 
supplied to the device.

Introduction
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Thermoelectric Cooler Basics

Heat is transported from 
top to bottom face or vice 
versa depending on the 
direction of the current 
flow.
In other words, it can 
work as a cooler or a 
heater depending on the 
direction of the current 
flow.
Hence, it can be used in 
the applications requiring 
thermal control.

Introduction

6

Thermal Control Unit

Thermal control unit (TCU) consists 
of a liquid heat exchanger, 
contactor plate and TEC assembly 
and it facilitates the control of 
package case temperature in the IC 
device test sites.

A contactor plate with a pedestal 
lies on the cold or the bottom side 
of TEC assembly and makes the 
contact with IC device.

TEC assembly usually contains two 
TECs arranged mechanically in 
parallel and electrically in series 
configuration.

Thermal 
Interface 
Material

Die

Pedestal

TEC # 1 TEC # 2

ChillerWater 
Inlet

Water 
Outlet

Case Qc

Qh

Electric Power

Introduction
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Thermal Control Unit

The liquid cooled heat 
exchanger lies on the hot or 
the top side of the TEC 
assembly.

The water inlet and outlet 
and the electric cable port 
are separate.

The K&S TCU features 
compact size and small 
footprint that makes it easy 
to integrate with IC device 
test sites

Thermal 
Interface 
Material

Die

Pedestal

TEC # 1 TEC # 2

ChillerWater 
Inlet

Water 
Outlet

Case Qc

Qh

Electric Power

Introduction

8

Electric Power (W)

Rc

Rh

TEC

R1

R2

Qc

Qh 

T_Die

T_water_av

T_Case

T_Pedestal

Tc

TEC

Th

The Heat Load Qc transfers from the Die at 
temperature T_Die to the cold side of TEC at 
temperature Tc. 
The TEC generates a temperature differential 
between the hot side at temperature Th and the 
cold side at temperature Tc at the expense of the 
electric power W.
The resultant heat Qh (Qc+W) transfers from the 
hot side of TEC at temperature Th to the coolant 
water at temperature T_water_av.

Temperature Variation in a TCU
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KNS has developed an elaborate analytical model 
of the TEC developed in EES (Engineering 
Equation Solver) to simulate its performance for 
any electrical and thermal inputs.

The driving equations are

Where:
Q  = Heat Load
I  = Current
V  = Voltage
Th = Hot Side TEC Temperature
Tc = Cold Side TEC Temperature
a  = Length/Breadth of Thermoelectric Pellet
h  = Thickness of Thermoelectric Pellet = 0.8 mm
γ = Geometry factor
N  = Number of Thermocouples 
Sm = Seeback coefficient = 2.068 *10-4 V/K
ρ = Electrical Resistivity = 1.029*10-5 Ohm-m
λ = Thermal Conductivity = 1.614 W/m-K

Copper

Alumina 
(Al2O3)

Semiconductor material 
(Bi2Te3)

Solder

Layer stack-up of the TEC

TEC Details

2

2

a
h

γ

Tc)-(Th*Smγ*ρ*I
N*2

V

Tc)-(Th*
γ
λ

-γ*ρ*I*0.5-Tc*I*Sm
N2

Q

=

+=

=
∗

Analytical Model

Material Thickness  
(mm)

Alumina 0.8
Copper 0.3
Solder 0.1

Bismuth Telluride 0.8
Solder 0.1
Copper 0.3
Alumina 0.8

Total 3.2 mm

10

Heat transfer analysis is 
done for the water chiller 
to determine the average 
water temperature.
The internal thermal 
resistance of the TEC is 
also calculated and 
taken into account.
One dimensional thermal 
resistance models of the 
sub-assemblies are 
developed and 
integrated with the TEC 
model.

Sub-Assemblies Details

2

TT
T

)T(T*Cp*mQh

out water,in water,
av water,

in water,out water,

+
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SolderCopperAluminaTEC RRRR ++=

av water,
TEC

Die21
TEC

TThRh)
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R
(*Qc

PowerQcQh

P*2Power

I*VP

Q*2Qc

−=+

−=+++

+=
=

=
=

Analytical Model
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The model simulates the Peltier effect of TECs very 
accurately.
It is generic and can be used for any TEC once its 
geometric and material properties are known.
It can be used to generate the characteristic 
performance curves of the TECs.
It is integrated with one-dimensional thermal 
resistance models of the cold and hot side sub-
assemblies and thus a complete system level 
modeling of the TCU can be done.
It can be used to do thermal analysis and determine 
the temperatures at different layers.

Features and CapabilitiesAnalytical Model

12

The model can also be used to change the 
dimensions of various layers and see its effect on the 
thermal performance. Hence, it can be used for the 
design and optimization purposes.

Besides geometric and thermal parameters, electric 
inputs can also be analyzed and optimized with the 
help of this model.

The model contains non-iterative procedures and the 
results are obtained in a very short time. 

It can be used only for steady state analysis.

Features and CapabilitiesAnalytical Model
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One of the parameters that influence the performance of TECs is 
the operating voltage input.

In this analysis, the complete system level analytical model of the 
TCU is used to determine the variation of the die junction 
temperature versus the TEC operating voltage for the heat loads of 
50 W and 140 W.

The optimal voltage is determined as 19 V for both the heat loads. 
It is observed that as the operating voltage is increased beyond the 
optimal voltage, internal Joule heating takes over the 
thermoelectric effect and the TCU thermal performance decreases.

Qc = 50 W Qc = 140 W

Optimal Voltage Simulation

14

Testing Equipment

In the second phase of the project, 
detailed experimental testing is done 
to determine the optimal voltage and 
validate the simulation results.

The equipment used in the testing 
are listed and shown here.

There are three different power 
supply units to supply power to 
mother board , TCU Thermal 
Controller and the pneumatic 
actuator.

Experimental Validation

Chiller Tower Rack containing other equipments

10 5

7

8 9

6

4

Ref. No. Equipment
1 IC Device Test Site
2 Mother Board with Device
3 Thermal Controller
4 Power Supply
5 Power Supply
6 Power Supply
7 Data Acquisition Switch/Unit
8 Data Acquisition Software
9 Computer/Monitor and Accesories 
10 Chiller Tower
11 TCU
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Thermostat

TCU
Thermal & Power

Controller

Motherboard

Die

Power 
Controller

Die Level Feedback

Data Acquisition

Pedestal (RTD) 
Temperature

Case (Thermocouple) Temperature Die 
Temperature

Inputs Power profile, 
setpoint 

PID Values

Processed 
Input

Outputs

Schematic of the Experimental SetupExperimental Validation

16

Graphic Output

A sample graphic output is displayed above.

In this test,
Heat Load = 50 W
Input Voltage = 12 V per TEC or 24 V per TCU

The test duration is 3 minutes to let the system reach steady state.

Besides graphic output, it also saves the output to a text file. The 
output die temperature in this particular test was 14. 7 °C. 

Experimental Validation

Die
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The die temperature reading in the steady state test 
decreases as the TEC voltage is increased. It reaches an 
optimal value at voltage around 19 V.
As the voltage is increased further internal Joule heating 
takes over the Peltier effect and the die temperature rather 
increases.
The trend is same for Qc = 50 W and Qc = 140 W. Also the 
trend matches with the predicted results of the analysis.

Qc = 50 W Qc = 140 W

ResultsExperimental Validation
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The total voltage and current readings were experimentally determined 
and multiplied to obtain the total electrical power input into the TECs.

As the TEC voltage increases, the electrical power increases rapidly for 
both Qc = 50 W and 140 W.

For 140 W, the electrical power is slightly more than corresponding 
figure for 50 W. For Qc = 140 W, the temperature inside the TEC is higher. 
As the thermoelectric material heats up, its electrical resistivity 
decreases. Hence, the current and power increases for the same voltage.

Qc = 50 W Qc = 140 W

ResultsExperimental Validation
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The coefficient of performance indicates the performance of a heat pump 
and is defined as Qc/Work. Here, the “Work” refers to the total electric 
power supplied to the TECs.

For a given heat load, COP decreases as the TEC voltage and the electric 
power increases.

For a given voltage, COP would be higher for the higher heat load. It can 
also be interpreted that as the heat load increases, temperature difference 
(Th-Tc) decreases and hence the performance of the heat pump 
increases.

Qc = 50 W Qc = 140 W

ResultsExperimental Validation
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TECs are solid state heat pumps working on the Peltier 
effect. They are very effective means of thermal 
management and control.

A TCU consists of a liquid heat exchanger, a contactor 
plate and TEC assembly and it facilitates the control of 
package case temperature in the IC device test sites.

KNS has developed an elaborate analytical model of the 
TEC. The model is also integrated with the one-
dimensional thermal resistance models of sub-assemblies 
and thus a complete system level modeling of the TCU can 
be done.

The model can be used for the thermal analysis and 
optimization with respect to geometric, thermal and 
electrical parameters.

Conclusions
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The system level model of the TCU is used to determine 
the variation of the die junction temperature versus the 
TEC operating voltage for the heat loads of 50 W and 140 
W. It was found that the optimal voltage input is 19 V per 
TEC.

Subsequently, experimental validation is done and it is 
observed that simulation results of the model are quite 
accurate. The optimal voltage is found to be 19 V per TEC 
experimentally also.

Besides die temperature, variation of other parameters 
like electric power, COP with respect to TEC voltage was 
also studied for the heat loads of 50 W and 140 W.

Conclusions
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Presentation Topics

Issues in Temperature Control during Test 
and Burn-in 
Current Solutions
Flow-based control
Normal Flow Micro-channel
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Issues in Temperature 
Control

Tj

Tin

DeviceTIM

Cold Plate

)(" """
.

dTIMcpinJ RRRqTT +++=

Controlling Tj when the power changes 
Controlling Tj across many devices given the variability in 
device power dissipation, environmental conditions and 
thermal resistance values

Tadayon, 2000

4

Maintaining Tj for High Power 
Devices

[ ])(" """"
.

dTIMcoreflowinJ RRRRqTT ++++=

Cpm
R

RRR

flow

coreflowcp

"

1
.

"

"""
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+=

Flow Resistivity

Core Resistivity

•If the core resistivity is small, then the cold plate 
thermal resistivity is inversely proportional to the 
flow rate

•By controlling the flow rate we can control the cold 
plate resistivity
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Temperature Variation in a Burn-
in Chamber

Variation in Tj leads to longer BI time
Tight Tj distribution increases yield
Sources of variation:

Variation in inlet T to the cold plate
Variation in power dissipation of components
Variation in the thermal resistance of the device and 
the interface
Variation in the CP/HS thermal resistance

6

Controlling Tj Distribution

[ ])()""( """"
..

dTIMcoreflowainJ RRRRqqTT +++∆++=

Function of 
Hardware Manufacturing

Tj

Tin

DeviceTIM

Cold Plate

Large variations in these will
amplify the power variation

Tin is determined by the maximum heat flux.
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What If?
The resistance of the cold plate can be 
controlled in real time using the die 
temperature?

Tj

Tin
Cold Plate

[ ])()""( """"
..

dTIMcoreflowainJ RRRRqqTT +++∆++=
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A typical HP Swaged Tube Cold 
Plate
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A Cold Plate Based on Normal 
Flow 
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Thermal management using 
a

Liquid Cold Plate
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The Temperature Budget

Tj

Ta

Functionality Limit

Ambient temperature

Ts Cold Plate Surface Temperature

Loop Performance

12

Liquid Loop Heat Spreading

"
""min q

TRR CP
i &
∆

+=

Cold plate Pump Air HX

∆TCP

∆TF

∆TAHX

Ts

Ta

∆TF and ∆TAHX can 
be reduced at will 
by increasing size 
of pump and air 
HX

Cold Plate Core Resistivity: R”core
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Why Microchannels?

Effect of Matrix Thickness
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Normal Flow Pressure Drop

2

1
g

P ∝∆V
g
LP

kk
gR

fs
core
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=
2

"
min,

For parallel flow L  (channel 
length) is constant and V is 
inversely proportional to the 
gap size. So,

For normal flow, the flow path is H, the channel height.

V
g
HP ∝∆

In normal flow arrangement, V is constant and 
H is proportional to g so ∆P stays constant
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Normal Flow Technology

16

Internal Design
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Silver Coated Laminations
Including Base
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Managing “Hot Spots”
Tailor Resistivity to 
heat dissipation

Uniform coolant inlet 
temperature
Local control of flow 
rate

Reduce temperature 
gradient
Reduce flow and 
pressure drop
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“Hot Spot” Demo
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Heat Flux 
Distribution 
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20

Comparison with other 
Technologies
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Conclusions
A cold plate based on the Normal Flow 
Technology has very low thermal resistance
For the proper ranges of the interface and 
device resistance, the junction to ambient 
resistance can be controlled by varying the flow 
rate through the cold plate
They key to successful control remains to be a 
low value of interface resistance
Normal Flow arrangement lends itself to 
managing hot spots
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AGENDA

• Burn-in today
• Thermal Resistance – A Quick Lesson
• The Challenges of  Today’s Burn-In
• The Thermal Budget
• Advanced Thermal Management
• Thinking outside the Box – Variable 

Thermal Resistance (VTR) Technology
• Closing Remarks on the Future
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“The Cost of Test is Approaching 
the Cost of Silicon”

-Senior Semiconductor Manager

“Google's Energy Bill for its
Servers Now Exceeds the Cost of 

the Equipment.”
-Business Week Online

Managing the Thermal Budget During Burn-In – A New 
Concept for Control – Lopez et al.

BiTS Workshop - 2006 4

Thermal Management

• Definition
– The art by which heat is controlled and 

removed by various means such as air or 
liquid and carried to an alternate location

The First Law of Thermodynamics 
(Conservation) states that energy is always 

conserved, it cannot be created or destroyed. 
In essence, energy can only be converted from 

one form to another. 
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The Modern Burn-In Facility
Low-to-Medium Power

• Conventional Burn-in 
chambers
– Box with recirculating air, 

usually cooled by air-to-air 
or air-to-liquid heat 
exchangers

– Thermal Management 
consists of adding as big of 
a heat sink as possible 
(typically)

Images from previous BiTS presentations

Managing the Thermal Budget During Burn-In – A New 
Concept for Control – Lopez et al.

BiTS Workshop - 2006 6

Modern Burn-In Facility
High Power

• High Power Burn-in chambers
– Box with impinged air or liquid 

chilled heads
– Thermal Management 

consists of impinging air 
onto heat sink or making 
contact with package via a 
thermal head

– Active monitoring for 
devices

Images from previous BiTS presentations
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Technology Drivers

• Increase yields
• Maximize visibility
• Eliminate the need for sort
• Maximize utilization
• Meet increasing demands 

of higher power, higher 
variance devices

Managing the Thermal Budget During Burn-In – A New 
Concept for Control – Lopez et al.

BiTS Workshop - 2006 8

Technology Drivers

• Increase yields
• Maximize visibility
• Minimize the need for sort
• Maximize utilization
• Meet increasing demands of higher power, 

higher variance devices

DECREASE THE COST PER UNIT THAT 
BURN-IN GENERATES
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)

Test Equation
Cost of Test (COT)

Cost of test/burn-in capital
- Test engineering expense 
- ATE
- Fixtures
- Software
- Thermal units

Cost of test capital + Total Labor
= Cost of Test

Yield
- Throughput
- Failure rate
- Partitioning

Profit/part
- Engineering expense
- Engineering Capital
- Materials

X

Yield   x   Profit/part   x   Number of Parts

( )
(

Total Labor
- Personnel 
- Operating Expenses
- Electricity
- Etc.( )+

X

Number of Parts
- Capital Reuse
- Life Expentency

= COT

Managing the Thermal Budget During Burn-In – A New 
Concept for Control – Lopez et al.

BiTS Workshop - 2006 10
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Test Equation
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Cost of test/burn-in capital
- Test engineering expense 
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- Throughput
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X

Yield   x   Profit/part   x   Number of Parts

( )
(

Total Labor
- Personnel 
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- Electricity
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X

Number of Parts
- Capital Reuse
- Life Expectancy

= COT
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The Simplified Thermal Circuit

Control Volume  Qin=Qout

Managing the Thermal Budget During Burn-In – A New 
Concept for Control – Lopez et al.

BiTS Workshop - 2006 12

The Simplified Thermal Circuit

Control Volume  Qin=Qout
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The Simplified Thermal Circuit

Control Volume  Qin=Qout

Managing the Thermal Budget During Burn-In – A New 
Concept for Control – Lopez et al.

BiTS Workshop - 2006 14

The Problem
Passive Heat Sinks

HIGH TEMPERATURE
HIGH POWER

REDUCE JUNCTION
TEMPERATURE
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The Problem
• Today’s batch process is becoming a thing 

of the past for even low power devices
• Because of wide power variations in today's 

products devices need to be binned in 
order to be processed in conventional burn-
in systems 

• Binning is inefficient and economically bad
– Throughput suffers
– The bins are not always apparent up 

front

Managing the Thermal Budget During Burn-In – A New 
Concept for Control – Lopez et al.

BiTS Workshop - 2006 16

The Problem

• Device
– 10W nominal logic device
– Integrated heat spreader

• Conventional Burn-In
– .4 C/W Package Resistance
– 1.2 C/W Interface Resistance
– 1.5 C/W Heat Sink Resistance @ 800 lfm (Chamber 

Spec.)
– Total = 3.1 C/W
– 31 C rise
– Set chamber to 94 C 
– Device running at 125 C junction temperature

• Sounds Easy…
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The Problem

Devices on,
showing a
10C delta

Chamber
raised to 80C
and stablized,
delta rises to

18C

Raise chamber
ambient to bring

devices into
Burn-In mode

Managing the Thermal Budget During Burn-In – A New 
Concept for Control – Lopez et al.

BiTS Workshop - 2006 18

The Problem

• Conventional Reality
– Device Varies from 5W to 15W
– .4 C/W Package Resistance
– 1.2 C/W Interface Resistance
– 1.5 C/W Heat Sink Resistance @ 800 lfm (Chamber 

Spec.)
– Total = 3.1 C/W
– 15 C rise to 46 C rise
– Set chamber to ??? C 
– Device running at ??? C junction temperature

• The “other” factors
– What about airflow variances?
– What about devices heating up downstream devices?

• And oh yeah and all these calculations are at room 
temperature as device heats up so does the variance…..
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The Solution

• So what do we do
– Well there’s binning….again 

– BUT that’s unacceptable
• The Solution

– Control the local environment 
– Active closed loop thermal 

control 
– (e.g. iSocket)

Managing the Thermal Budget During Burn-In – A New 
Concept for Control – Lopez et al.

BiTS Workshop - 2006 20

The Problem

HIGH TEMPERATURE
HIGH POWER

REDUCE JUNCTION
TEMPERATURE

DEVICE POWER VARIATION
AIRFLOW VARIATION

INTERFACE VARIATION
DOWNSTREAM DEVICE

HEATING
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The Solution

Devices on
showing a
10C delta

Chamber
raised to 80C
and stablized,
delta rises to

18C

iSocket turned
on to 125C

setpoint,
temperature
held to +/-3C

iSocket turned
off

Managing the Thermal Budget During Burn-In – A New 
Concept for Control – Lopez et al.

BiTS Workshop - 2006 22

The Thermal Budget

• But, we’re not done…
– Yet another issue arises when you need 

to consider the thermal budget of the 
chamber

– Since a chamber is a finite control 
volume ……. the following must be true 

Qin = Qout
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The Problem
Advanced Thermal Control

HIGH TEMPERATURE
HIGH POWER

REDUCE JUNCTION
TEMPERATURE

DEVICE POWER VARIATION
AIRFLOW VARIATION

INTERFACE VARIATION
DOWNSTREAM DEVICE HEATING

POWER SUPPLY
MANAGEMENT

THERMAL BUDGET

Managing the Thermal Budget During Burn-In – A New 
Concept for Control – Lopez et al.

BiTS Workshop - 2006 24

The Thermal Budget

• Examine a chamber
– 20kW of heat removal capacity….

• This is at 125C (air-to-air)
• As ambient temperatures decrease the heat 

removal capability of chamber decreases.
• This will be better for water chilled systems

– This means we can process 2000 devices at 
10W apiece right?

– Wrong…
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The Thermal Budget
– Don’t forget the device variance
– There is no guarantee that we have a “perfect”

distribution,  -------- reality is never perfect.
– So what do we do… plan for the worst case scenario –

probably a safe path to avoid chamber thermal runaway

PERFECT REALITY
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The Thermal Budget

• Part of the thermal budget needs to be given to 
the thermal control, but how much?

• The intent is to add heat to each device so that 
they all “act” alike.

• We are able to process all the devices together, 
but the box becomes the limiter to the equation

• Given the 15W max due to variance we should 
plan on 1300 devices

• Reduce throughput by 35% when you don’t 
necessarily need to…



20062006 Session 7 

March 12 - 15, 2006

Paper #4

14

Thermal Management Advances

Managing the Thermal Budget During Burn-In – A New 
Concept for Control – Lopez et al.

BiTS Workshop - 2006 27

Advanced Thermal Management
• We could…

– Liquid cooling
• Expensive
• Prohibitive upfront capital expenditure
• Dedicated
• Maintenance Heavy

– Impinged air active control systems
• Expensive
• Prohibitive upfront capital expenditure
• Low Density
• Consumables at a high cost

Managing the Thermal Budget During Burn-In – A New 
Concept for Control – Lopez et al.

BiTS Workshop - 2006 28

Thinking Outside the Box

• Variable Thermal Resistance (VTR) 
technology
– Controls the thermal path
– Tuned thermal resistance
– Optimal thermal control
– Device independent
– Large capital avoidance
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Thinking Outside the Box

Control Volume  Qin=Qout

• Treat each device as it’s 
own burn-in box

• No special treatment to 
effectively increase the 
temperature of the product

• No box to constrain the 
upper power requirement

Managing the Thermal Budget During Burn-In – A New 
Concept for Control – Lopez et al.

BiTS Workshop - 2006 30

Thinking Outside the Box

Control Volume  Qin=Qout

Thermal Resistance vs. Approach Velocity
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Thinking Outside the Box

Control Volume  Qin=Qout

•VTR Technology

•Let the device heat itself

•Create a mini-environment

Managing the Thermal Budget During Burn-In – A New 
Concept for Control – Lopez et al.

BiTS Workshop - 2006 32

Thinking Outside the Box
The Mini-Environment

• Effectively we can process a 15W device next to a 
5W device without all devices having to consume 
15W.
– Throughput increases
– Operating costs decrease
– Power supply sizing decreases

• “An independent burn-in environment for every 
device”
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The Benefits

• Full Entitlement
– The capital expenditure can be used to it’s full 

potential
– The independence of processing “unlike”

devices within the same environment becomes 
a reality

– Device independent
– Throughput
– Reduced operating costs

• Cooling can be achieved on a bulk level versus a 
finite level

Managing the Thermal Budget During Burn-In – A New 
Concept for Control – Lopez et al.

BiTS Workshop - 2006 34

Future Thoughts

• The burn-in environment will change as 
we move toward higher power, higher 
variance devices

• Thinking and moving outside the box will 
allow for more flexible upgradeable 
systems in the future

• Full Entitlement is a necessity to lower the 
cost of test in the future
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