

ARCHIVE 2006 Session 1 Advanced Socket Materials

"Carbon Nanotube Polymer Composites For Socket Applications" Mark Hyman, Tim Jozokos, Heidi Sardinha, Yuanheng Zhang Hyperion Catalysis International, Inc.

"PEEK-based Solutions For Test Socket Applications" John Walling, Sam Brahmbhatt — Victrex USA, Inc.

"Para-phenylene Rigid Rod Polymers And Their Unique Attributes For Burn-in And Test Sockets" Lorenzo P. DiSano — Ensinger Industries, Inc.

COPYRIGHT NOTICE

• The papers in this publication comprise the proceedings of the 2006 BiTS Workshop. They reflect the authors' opinions and are reproduced as presented , without change. Their inclusion in this publication does not constitute an endorsement by the BiTS Workshop, the sponsors, BiTS Workshop LLC, or the authors.

• There is NO copyright protection claimed by this publication or the authors. However, each presentation is the work of the authors and their respective companies: as such, it is strongly suggested that any use reflect proper acknowledgement to the appropriate source. Any questions regarding the use of any materials presented should be directed to the author/s or their companies.

• The BiTS logo and 'Burn-in & Test Socket Workshop' are trademarks of BiTS Workshop LLC.

Carbon Nanotube Polymer Composites for Socket Applications

2006 Burn-in & Test Socket Workshop March 12 - 15, 2006

Mark Hyman, Tim Jozokos, Yuanheng Zhang, Heidi Sardinha Hyperion Catalysis International, Inc.

<section-header><section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item><table-row><table-row><table-row><table-row><table-row><table-row><table-row><table-row><table-row><table-row>

Samples					
Commercially Available Stock Shapes					
	<u>Vr (ohm-cm)</u>	<u>Sr (ohm/sq.)</u>			
• PEI - Carbon Fiber	10 ¹	10 ¹			
• PEI - Carbon Nanotub	oes 10 ²	10 ²			
• PEEK - Carbon Fiber	10 ⁷	10 ⁷			
PEEK - Carbon Nanot	ubes 10 ¹	10 ³			
 PEEK - CNT and CF for comparison 					
SEM of fractured surfaces					
March 13, 2006 Carbon Nanotube Polymer Composites for Socket Applications 13					

- Injection molding aggravates electrical problems caused by carbon fiber
- ESD management is no longer optional
- Socket performance cannot be sacrificed

Carbon nanotubes provide an appropriately scaled microstructure for static dissipative sockets

<section-header><section-header><image><image><caption><image><image><image><image>

BiTS application requirements

- High wear resistance
 - Up to 100,000 pin insertions
- Processability
 - Thin-wall molding
 - Ease of machining
 - Low residual stresses
- Electrostatic dissipative
 - Does not generate static charge
 - Dissipate incoming static charge safely

Product Solutions for BiTS applications					
Socket Type	Machined (stock shapes)	Molded (thick wall >2mm)	Molded (thin wall <2mm)		
PEEK Base	450G	150G	90G		
Conductive <e7 sq<="" td="" ω=""><td>Conductive filler</td><td>Conductive filler</td><td>Conductive filler</td></e7>	Conductive filler	Conductive filler	Conductive filler		
<u>Dissipative</u> E7-E9 Ω/sq	Conductive filler	Conductive filler	Conductive filler		
<u>Antistatic</u> E9-E11 Ω/sq	Conductive filler	Conductive filler	Conductive filler		
<u>Insulative</u> >E11 Ω/sq	Unfilled/Glass Mineral/Ceramic	Unfilled/Glass Mineral/Ceramic	Unfilled/Glass Mineral/Ceramic		

Part description and requirements

- Flat plate with holes
- ~ 50 mm x 50 mm
- 0.8 1.0 mm thick
- Part was molded with PES
- ESD: SR E9-E11 ohms

Improved fatigue and impact toughness

PEEK solution with unique material and filler technology to optimize rheological and ESD properties

Part description and requirements

- Stock shape 3/8 in. thick with .010 in. & .030 in. holes
- Ease of machining
- Burr-free holes
- Dimensional stability
- Insertion wear resistance

PEEK solution with unique filler technology to optimize machining and dimensional stability

Para-phenylene Rigid Rod Polymers and Their Unique Attributes for Burn-in and Test Sockets

2006 Burn-in and Test Socket Workshop March 12 - 15 2006

Lorenzo P. DiSano Ensinger Ind. – Washington, PA USA

What are **Para-phenylene Rigid Rod Polymers?**

- Wholly aromatic.
- Benzene rings directly bonded to each other.
- Self Reinforcing at the molecular level.
- Isotropic
- Amorphous
- Extraordinarily hard, strong and stiff.
- Previously intractable
- Commercially available

2

3

History of SRPs

- Marvel and Vogel recognized the feasibility and potential of rigid rod polymers. (1950s)
- Under Air Force Research Laboratory sponsorship a number of chemical producers such as Dow Chemical and Hoechst Celanese validated SRPs. (1960s)
- Maxdem develops process-able SRPs. (1980s)
- Maxdem launches Mississippi Polymer Technology - MPT. (2000)
- MPT introduces Parmax® SRP, a new family of thermoplastic SRPs. (2003)
- Ensinger Industries commercializes Tecamax[™] SRP compression molded and extruded shapes. (2004)
- Solvay purchases MPT and the Parmax® SRP product line. (2006)

SRP HARDNESS					
Hardness					
Polycarbonate	В				
Polycyclic Olefins	2H	Increasing Hardness			
PMMA	ЗН				
SRP -1000	≥9 H				
		13			

19

SRP Electrical Properties

- Dielectric Constant (ASTM 150) 3.1 (1MHz)
- Dielectric Strength (ASTM 149) 6.44 kV/mm
- Specific Volume Resistance (DIN IEC93)
 6 X 10¹⁵Ω cm
- Surface Resistance (DIN IEC 93) 2 X $10^{16} \Omega$
- Resistance to Tracking (IEC 112) CTI 150

27

Key Attributes of SRPs for Burn-in & Test Sockets

- Excellent Machinability Like Aluminum
- Homogenous, Amorphous & Isotropic
- High Modulus
- High Creep Resistance
- Low/Uniform CLTE
- Low Moisture Pick-Up
- Exceptional Abrasion Resistance