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Introduction

• Synergetix: Leading-
edge since 1994

• Spring Contact
Probe-based sockets

• RF expertise leads to
Ni concerns
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Concerns Regarding Nickel

• High permeability
and resistivity
– Thin skin depth

at high frequency
– Higher insertion

loss
• Necessary as

barrier layer
and for
hardness
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Predicted Response

• Best case (no Ni) @ 9 GHz
– RL ˜  2.5 O / cm
– aL ˜  0.25 dB / cm
– Total a ˜  0.06 dB

• Worst case, all current through thin
flash (7 µ”) Au, a ˜  0.25 dB
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Test Subject

• Probe: Ultra Micro
Pitch (101052)
– Moderate BW at

1 mm pitch
– Good DC & life

performance
– In use at

concerned
customer
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Test Subject

• Three-piece
design

• Floats in test
socket

• Plunger-barrel
electrical path
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Test Concept

• Probes with
various platings

• Measure S21 with
HP8719 VNA

• Agilent ADS
• Measure

repeatability
• Compare platings
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Test Setup

Ground Pins

Signal Pins
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Probe Configurations

50 µ” (1.3 µm)7 µ” (0.1 µm)3

None50 µ” (1.3 µm)2

None7 µ” (0.1 µm)4

50 µ” (1.3 µm)50 µ” (1.3 µm)1
Ni ThicknessAu ThicknessPin
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Repeatability
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Results

50 Au / 50 Ni

50 Au / 0 Ni

7 Au / 50 Ni

7 Au / 0 Ni
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Conclusion

• Nickel content has no significant
effect on TL behavior

• Gold thickness variations
also not significant

• Testing very repeatable



Jason Mroczkowski
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Understanding the
effects of signal path

bandwidth on
semiconductor test
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Presentation Topics

! Bandwidth Definition

! Bandwidth limitations

! Digital signal transmission

! Noise effects

! Jitter
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Bandwidth

! The range of frequencies that can pass through
a conductor without significant degradation

! The higher the bandwidth the greater the
capacity in BPS.
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Bandwidth
! 3 dB point

" point at which power output is half the power input
" point at which output voltage is 70% of input voltage

! 1 dB point
" point at which output voltage is 90% of input voltage

Bandwidth
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Bandwidth limitations

! What causes bandwidth degradation
" inductance, capacitance, dielectric losses, skin

effect, etc.
! PCB effects

" Dielectric constant of PCB
" Trace size
" trace layout

! Contactor effects
" Dielectric constant of Contactor body
" Pitch of device
" quality of contact element (spring probe)
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System Bandwidth in Semiconductor test

! At high frequencies, the board and contactor
electrical performance interact.

– reflections at connectors
– 90 degree transition to contactor
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Insertion loss of contactor alone



8

Insertion loss of 25cm PCB alone
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Insertion loss of contactor and PCB
together
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Bandwidth

! compare board bandwidth to contactor
bandwidth
" contactor - 2.54-6 mm
" board - 5-15 inches
" more loss through board
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Analog signal

A continuous signal
that varies over time

Sine wave represents
an Analog signal

Units of Hertz

Digital signal

A sequence that has
discrete values over time

Square wave represents a
digital signal

1 or 0 translated to voltage
pulses over a conductor

Units of Bits Per Second
(BPS)

Digital Signals
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Digital signals

! A Digital signal is made up of an infinite series
of of sine waveforms (analog signals)

! To perfectly represent a digital signal a
transmission line must pass all frequencies of
sine waveforms

Y=cos(wt)-cos(3wt)/3+cos(5wt)/5-cos(7wt)/7 … (etc.)
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! Minimum Harmonics to represent Digital signal
" base frequency

– 1/2 bits per second rate
" need fundamental plus third and fifth harmonic

– minimum necessary to retain data when converted to
digital signal

Digital signals
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Analog and Digital Signals

! Example
" 1Gbps → 500MHz base frequency
" 1.5GHz third harmonic
" 2.5GHz fifth harmonic
" Need at least 2.5GHz analog bandwidth to transmit

1Gbps binary digital signal
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Digital signal rise time

! Relationship of Analog Bandwidth to Digital
signal rise-time
" what bandwidth is required for certain rise time

– BW = .35/Tr

! Example
" to pass a 100ps pulse a bandwidth of 3.5 GHz
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Digital signal Transmission

! What degrades digital signal transmission
" Noise

– Sources of Noise
! Connectors, PCB trace layout, IC package geometry,

power and ground planes
– Noise Effects

! Reflections, Crosstalk, ground shifts, inductive glitches
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! Digital signal Noise

" Transmission line effects
– impedance mismatches

" Reflections
–leads to excessive spurious ringing

" Crosstalk
– Voltage on signal when nearby signal changes state
– Due to capacitive and inductive coupling
– related to separation of line, line length, distance to

ground

Digital signal Transmission
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Digital signal Transmission

! Digital signal Noise cont.

" Ground bounces
– shifts in reference levels due to high frequency transients
– caused by large load currents
– results in logic errors and degraded propogation delays

" Thermal
– White noise
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Jitter Definition

! The slight movement of a transmission signal in
time or phase that can introduce errors and loss
of synchronization.
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! Sources of Jitter
" Electromagnetic interference

– switching power supplies
– induces noise currents into signal conductor

" Crosstalk
– magnetic and electric fields from adjacent signal
– alter bias of signal

" Reflections
– impedance mismatch
– signal interferes with itself
– energy reflected back to source

Digital signal jitter
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Jitter

! Conditions that improve or degrade Jitter
" Quality of the end termination in the tester
" Quality of the device termination
" Physical distance between the discontinuity and

terminations
" Occurrence of other discontinuities
" Operating data rate
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Eye Diagrams

! Ideal case
" no noise
" probes only

! Real case
" added noise
" added pcb
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Future Design Challenge

! Optimize the interface between board and
contactor
" develop board trace characteristics that minimize

the impedance mismatch
" 90 degree transition capacitive
" compensate with trace termination geometry
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Conclusions

! Board and contactor interact and therefore must
be characterized together

! For successful digital signal transmission a
conductor must pass at least the 5th
fundamental

! Rise time limited by bandwidth
! Noise creates jitter which leads to digital signal

errors
! Optimization of board to contactor transition to

increase signal integrity
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Agenda

• Driving forces on test socket requirements
• Existing Socket characterization techniques
• A higher bandwidth method
• An example
• Summary
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IEEE 1394b
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The Challenge
• To test these devices at speed, a socket is required

! Impact " socket must be well understood electrically

• Can have two independent requirements:
! Power/return pins: Z(f) " 0

# CRES stable and well below 50 mohms
# Loop inductance less than 3.0 nH

!  Data rate pins, Z0 " 50 Ohms
# Insertion loss > - 1 dB over the freq range
# Return loss < -15 dB over the freq range
       --  or  --
#Electrical lengths very short

• Data rate pins, up to at least the signal bandwidth
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Data Rate " Signal Bandwidth

GbpsFclock ×=
2
1

clockFBW ×(2 " 5)~

GbpsBW ×" )21(~

Signal bandwidths will be > 20 GHz
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Traditional “High Bandwidth”
Technique: open / short / loop thru

1
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BW limitation
is ability to
model the

surrogate chip
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2 Traditional Loop Thru methods

Out

Mounting
Holes

Force

Landing
coupon

Socket

Surrogate
package

compression

In through the orange &
out through the green

In
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Two port through

VIA
Top Side CPWG

CPWG

µ-probe

A
gi

le
nt

  V
N
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A " Surrogate Package
B " Socket (DUT)
C " Landing coupon

A

B

C

A

B

C
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One Higher Bandwidth Technique:
measure fixtures and de-embed

- = Socket
response+

Measure complete
system

Measure surrogate
package and landing
coupon, independently

Numerically
extract just
the socket

Landing 
coupon

Surrogate 
package
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Thru measurements

•Coupon and surrogate only
approximately emulate actual
package and board

•Most expensive
•Most controlled /
highest accuracy

Two port through
(landing coupon + surrogate package)

5

•Assumes thru = ½ loop
•Open/short/thru require
characterization/deembedding

•Measures pin-to-
pin and pin-to-
ground coupling

2-port open/short/thru (loop)
(landing coupon + surrogate package)

4

•Complex shorted package requires
characterization and deembedding
•Discontinuity at ref.  plane

•Relatively cheap
with mostly OTS
components

Two port loop bandwidth
(landing coupon or shorted package)

3

•Difficult to probe 2 sides of socket
simultaneously
•Discontinuity at ref. plane

•No extra hardwareTwo port thru
(socket only)

2

•BW is inferred from step risetime
•Pin-to-pin coupling not measured
•Fixture removal more difficult

•Cheap and easyTDR and measure risetime
(socket only)

1

-’s+’sDescription#
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Measurement System
• Equipment list:

!GigaTest Labs Probe Station

!35 GHz coaxial cables (3.5mm SMA connectors)

!Agilent Technologies 8510C VNA

!GGB probes, qty=2 (part number 40A-250-GSG-DP)

!Cascade Microtech LRM calibration substrate

!Cascade Microtech Wincal LRM calibration program

!Agilent Advanced Design System software (ADS 2002C)

!Measurements and analysis
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System (Measured) Performance
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Fixture, Landing Coupon
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Fixture, Surrogate Chip

bottom top
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De-embed to Extract Just the Socket,
in Agilent’s ADS

Landing coupon De-embed 
data file (slide 14)

Surrogate De-embed 
data file (slide 15)

Measured
Fixture/Socket/Surrogate (slide 13)

• Simulated S parameters of de-emedded socket only

S2P
SNP5
File="as s embly_T6_s aragut_T6.ds "

21

R e f

Deembed2
SNP6
File="T6_s urr_zero_eight_res .ds "

2 1

Re f

Deembed2
SNP4
File="T6.ds "

21

R e f
Term
Term2

Z=50 Ohm
Num=2

Term
Term1

Z=50 Ohm
Num=1
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Through Path,
De-emedded Socket Only
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Strengths
• Landing coupon and surrogate package are

very clean well out to 25 GHz
• Allows for a fair “apples-to-apples”

comparison of multiple sockets
!Removes any layout advantage one supplier

may have over another
• Discontinuities at launch can be adjusted

out if necessary
!Common for ref plane to be off from probe tip
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Weaknesses
• Expensive; other options use either mechanical

package samples or other ‘cheap’ fixtures
• Ceramics are not identical to final tooling

environment
!Can’t optimize the via/pad/pin as a system, only look at

the pin independently.
• HTCC vias are poor.  Surrogate package

performance was weakest part
• More than two ports, very challenging to probe.

!Launches too close to each other to fan out
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Next steps
• Second spin on the hardware

!Increased socket size, match mechanical
socket samples

!Higher number of coupled lines
!More extensive usage of LRM and TRL

calibration structures
!LTCC verse HTCC tradeoffs
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Conclusions
• Application bandwidths will only increase

• New characterization techniques need to evolve
with new socket technologies

• The fixtures used to facilitate the measurements
are as critical as the socket itself.

• Measuring each component and de-embedding
techniques have a useful bandwidth above 25
GHz
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