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Industry Trends / Materials Needs
Trends

• Smaller Foot Print

• Smaller Pitch

• Increased
Functionality

• New Package
Designs

Impact

» Higher Insertion
Pressure -
Stronger Materials

» Greater Tolerance
Control / More
Stable

» More Sensitive to
Static Charge / ESd
Materials

» Innovative
Solutions / New
Materials



Performance Concerns for Materials Used in BiTS

• Mechanical Strength to Withstand Insert
Loads

• Thermal Resistance from -55°C to +155°C
• Tight Dimensional Control Over the Full

Temperature Range

• Does not Generate Static Charge

• Safely Dissipates Static Electricity



How does an Engineer select the best
plastic material(s) for the application?

There are many factors to take
into consideration...



Among Selection Factors
• Thermal Environment
• Electrical Requirements

– Static Dissipation
– Dielectrics

• Dimensional Stability
– Thermal
– Moisture

• Mechanicals
• Longevity in Service
• Availability of Materials
• Ease of Fabrication
• Cost
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The Material Selection Process

Application

EnvironmentPhysical
Performance

Application
Considerations
•Bearing & Wear ?
•Static/Structural ?

Environmental
Considerations
• Thermal
• Chemical
• Regulatory

Physical
Performance
• Bearing & Wear
• Dimensional Stability
• Strength & Stiffness
• Electrical



Needs vs. Materials for Bits
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Mechanical (Strength) Properties

• Wear Resistance or Crush Resistance ??

• Pins and Wires Pressed onto a BiTS Device
Are Likely to Compress the Contact
Surface More than “Wear” It.  Compare
Relative Compressive Strengths.

• Maintain Strength at Elevated
Temperatures
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AEP's STIFFNESS AT TEMPERATURE
Potential BiTS Materials
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What About Dimensional Stability?
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There’s More to CLTE Than A Single Point

Data Sheets Typically Show A Single Value for
CLTE.

The World Is Not That Simple...



There’s More to CLTE Than A Single Point

PEEK is Crystalline,

But Still Exhibits Tg Effect

Glass Fibers Enhance
Dimensional Stability,
Especially in
Crystalline Polymers
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Amorphous Polymers’ CLTE

No Abrupt Transitions

GF’s Have Less Effect
in Amorphous
Polymers

(than in crystalline
polymers)

TORLON 4203
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CREEP AT 150C  -  1% DEFORMATION
Isometric Stress-Time Curves
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Socket Machined from Torlon 4203

Unfilled Polyamideimide



mils



Hole Density and Size

• Ever Higher Performance Demands
Higher Density / More Complexity
–MPU, Video Graphics
–Approaching 100 µm Hole to

Hole Geometries

• BiTS Materials Must Be Able To
Deliver



Hole Size and Density Study
• 10 and 5.5 mil holes drilled into 75 mil plates
• Spacing 10, 8, 6, 4 mils wall to wall
• 4 x 4 grid pattern
• Examined by optical microscopy
• Materials:

– Unfilled Ultem Polyetherimide
– PEEK Polyetheretherketone
– GF PEEK (30% GF)
– Torlon Polyamideimide
– Torlon 5530 (30% Glass Fibers)
– Semitron ESd 520HR - Static Dissipative

Filled Torlon



Machining Conditions Used
– Carbide High Speed Drill Bits

– For 10 Mil Holes:
• 8,500 RPM
• 15 inches per minute feed rate
• 15 mils “peck”

– For 5.5 Mil Holes
• 10,000 RPM
• 20-25 inches per minute
• 20 mils “peck”



PEEK  (unfilled)
10 mils @ 5 mils





PEEK  (30% Glass Fibers)
10 mils @ 3 mils



Torlon 4203 PAI
   5.5 mil @ 10 mils



Torlon 4203 PAI.
5.5 mil @ 10 mils



Torlon 4203 (Unfilled)
5.5 mils @ 5 mils





Ultem PEI (unfilled)
5.5 mils x 4 mils



Celazole PBI
10 mils @ 5 mils



Semitron ESd 520HR
10 mils @ 4 mils



5.5 mils @ 10 mils



Torlon 5530 (30% Glass Fiber)
10 mils @ 3 mils



All These Materials Can Be
Machined into BiTS Well
• Key:  Sharp Bits and Experience
• Unfilled

– Softer; More difficult to do cleanly
– But can be done well with technique

• Filled
– Tendency to machine more cleanly
– Smaller geometries make it more difficult

to get accurate hole to hole spacing
– Dulls drill bits faster
– Generates more heat during drilling



Issues in Small Drilling Holes
• Drill Bits are Small and Break Easily
• Bits Dull Quickly, Especially in GF and CF
• GF or CF Can Deflect the Drill Bit
• If There are Several Hundred Holes, Bits

Can Break or Dull Well Before Finishing
• Heat, thus CLTE, Can be Issues in High

Tolerance Alignment in Unfilled Plastics
• Stress Relief - By Supplier and In-Process

CAD Designing is Easy.  Making Parts is Tougher



What About Those Static Discharges?

• Degrade or Destroy
Semiconductor Devices
⇒  Discharge to the Device
⇒  Discharge from Device
⇒  Field Induced Discharge

• Disruption of an Electronic
System Leading to
Malfunction or Failure



Electrostatic Dissipative (ESd)
ESd materials are capable of slowly bleeding
away static electricity in a controlled manner...

Engineers specify ESd performance based
on the application and the sensitivity of the

product to ESD

Conductive

Materials
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Reliably Maintaining Resistivity Target in Production
Environment is Not Feasible via CF Loading Alone
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Machining or Injection Molding ?
• Large Runs of Same

Design
• Highest Precision and

Closest Tolerances
• Complex Design Freedom
• New Design Evaluation
• Thicker and/or Thinner

Cross-sections Possible
& Combined

•  Lowest Internal Stresses
• No Weld Lines
• Quickest Turn-Around

» Injection Molding

» Machining

» Machining
» Machining
» Machining

» Machining
» Machining
» Machining



Extruded or Compression Molded ?
Extruded 

• Higher Volume
Production Runs

• Higher Stresses in
Fiber Filled
Materials

• Mostly Available to
4” Diameter Rods;
to 2” Thick Plate;
and 4” OD Tubes

• Longer Lengths
(48”) for All
Geometries

Compression Molded
• Lower Volumes
• Lowest Stress Levels
• Best Dimensional

Stability
• Larger Diameter

Rods or OD/ID Tubes,
but <12” in Length

• Non-Melt
Processable
Materials Feasible

• Specialty
Formulations Easier
to Evaluate



Make The

Best Choice

Know the
Requirements

Know the
Materials



Jason Mroczkowski
Everett Charles Technologies

March, 2003

Permittivity
Determination of
Contactor Dielectrics
at RF Frequencies
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Presentation Topics
■ STG’s Need

➤ To understand contactor material electrical
properties in the GHz Frequency Range

■ Our Goal
➤ Complex permittivity at high frequencies

■ The Problem
➤ No Published Data at High Frequencies for contactor

materials
■ Our Solution

➤ Measure properties using Vector Network Analyzer
■ Some Data

➤ Dielectric constant, loss versus frequency
■ The Future
■ Summary and Conclusion
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Our Need

■ ECT-STG needed to understand effects of high
frequency signals on contactor dielectric materials
➤ Increasing operating frequencies of semiconductor

devices
– 10 to 20 times bps needed for bandwidth
– 500 mbps → 5 – 10 GHz bandwidth needed

➤ Known: low frequency properties (MHz)
➤ Unknown: high frequency properties (GHz)

– do properties diverge from low frequency values?
➤ If properties do not match published values at High

frequencies transmission characteristics will change
– designed in MHz used at GHz may lead to disaster
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The Problem

■ There is little published data for test contactor
material permittivity characteristics in the GHz
range

➤ Current publications specify material properties at low
frequencies (e.g.10Mhz or so)

➤ Manufacturer material specifications vary
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Our Goal
■ Determine dielectric properties of contactor

materials in the GHz range

➤ Measure permittivity as function of frequency

➤ Use Software simulations to correlate measured data

■ Do material properties change as frequency
increases

➤ Is there a trend as frequency increases?

➤ Will material properties degrade at high frequency?

➤ If so how will it affect transmission characteristics?
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Intro To Permittivity
■ What is permittivity?

➤ Ability of material to resist alignment of electron
■ What is complex permittivity?

➤ Complex number
➤ Real part - relative permittivity
➤ Imaginary part - attenuation constant (loss)

■ What is relative permittivity?
➤ Ratio of  material permittivity to that of a vacuum
➤ Dielectric constant

■ Why is permittivity important?
➤ Permittivity describes a materials insulating properties
➤ Affects characteristic impedance of transmission lines
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Theory
■ General permittivity

➤ Complex permittivity       εεεε  = εεεεo(εεεεr’ - εεεεr’’)

➤ Dielectric constant (capacity to hold charge)      εεεεr’
– Free space  εεεεr’ = 1

➤ Dielectric and conductor loss (energy dissipation)    εεεεr’’
– Free space      εεεεr’’ = 0

➤ Loss tangent              tan δδδδ = εεεεr’’/ εεεεr’

➤  Characteristic impedance
– change in Zo changes εεεεr’ may cause mismatch

( )rε/1 o ∝Ζ
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Measurement (Obstacles)

■ Equipment costs
➤ Off the shelf measurement units - mucho denero

➤ Only measure to 1GHz

■ Sample Fabrication
➤ Milling, etching, polishing, assembly
➤ technique dependent
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Obstacles (cont...)

■ Accuracy and precision of technique
➤ Error introduced by non-idealities
➤ More sensitive at high frequency
➤ Frequency range - varies dependent upon

technique

■ Time and RedBull(energy)
➤ Fabrication of samples
➤ Measurement tools needed
➤ Measurement setup
➤ Data acquisition
➤ Extraction of properties from data
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The Solution

■ Measurement technique
➤ Many solution procedures
➤ Each technique has advantages and disadvantages

Technique Field Advantages Disadvantages ∆∆∆∆εεεε’r ∆∆∆∆tanδδδδr

Transmission-line TEM,TE10 Broadband Precision machining of
specimen

±2% ±0.01

Cavity TE011 Very Accurate Low Loss ±0.5% ±5x10-4

Dielectric
Resonator

TM110 Very Accurate Low Loss ±.05% ±5x10-4

Whispering
Gallery

Hybrid Very Accurate High Frequency ±1% ±5x10-6

Fabry Perot TE01 Very Accurate Low Loss ±1% ±5x10-5
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The Solution (Methods)

Resonant Cavity

Fabry Perot

Open Ended Coax Whispering Gallery
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The Solution (Method)
■ Coplanar Waveguide T-

Resonator
➤ Resonates at odd-quarter

wavelengths
➤ Impedance independent
➤ Easy to fabricate samples with

scrap material
➤ Can use air-coplanar microwave

probes for testing
➤ Multiple resonances allow

broadband frequency range
➤ Scalable
➤ known equations for εεεεeff and ααααt

■ Cost efficient, simple,
accurate
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The Solution  (Method)
■ Laminate .5oz. copper to material

samples
■ Fabricate CPW tee shape to

approximate 50ohm impedance
➤ .005” (.127mm) slot machined in with very

good results

■ Add air bridges to reduce slot line
resonance
➤ Connect grounds to ensure equal

potential
➤ Eliminate resonance due to stub transition
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The Solution (Methods)
■ Extract S-Parameters with Vector Network Analyzer

➤ HP8510C network analyzer
➤ Picoprobe 40A-GSG-1000-DS 1mm pitch probes
➤ Probes calibrated using full two port SOLT (Short-Open-

Load-Thru) technique
➤ Save S21 (transmission) data
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The Solution (Theory)
■ T-resonator theory

➤ εεεεeff = ((n•c)/(4 •Lstub •fn))2

➤ ααααtot,n = 8.686 ((ππππ • n•BWn )/(4• Lstub• fn)) [dB/length]
(n=resonance index, c=speed of light, Fn=resonant

frequency, BWn=local 3dB point frequency)
Port Port

S
W

Sg

L stub

L feed
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The Solution (Theory)

■ Dielectric constant and Loss tangent calculation
➤ εεεεr’ and εεεεr’’ found by solving elliptic integral

➤ Requires too much brain power
– May cause nervous breakdown if calculated

manually
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Solution - Theory

■ Match measured
effective
dielectric
constant to
relative dielectric

■ Match planar-EM
simulation to
measured
resonance to
determine loss
tangent
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Results -

■ Plot measured insertion loss

■ Extract resonant frequencies and 3dB points from
insertion loss plot

Composite of Materials Tested 
Insertion Loss (dB)
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Results
■ Determine relative dielectric using CPW

transmission line software

■ Plot relative dielectric vs. frequency
■ Compare to published (1MHz) data

Dependence of frequency on Dielectric constant

2.50

2.70

2.90

3.10

3.30

3.50

3.70

3.90

4.10

0 5 10 15 20 25

Frequency (GHz)

D
ie

le
ct

ric
 C

on
st

an
t (

Er
)

Ultem 1000
Torlon 5530
Peek 1000
PPS
Torlon 4203

Material Ultem 1000 Torlon 5530 Torlon 4203 Peek 1000 PPS
Published Dielectric constant 3.15 6.3 4.2 3.3 3



20

Results

■ Plot total attenuation vs. frequency

Total Attenuation for Various Materials

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

2 4 6 8 10 12 14 16 18 20

Frequency (GHz)

A
tte

nu
at

io
n 

(d
B

/m
m

)

Ultem 1000
Torlon 5530
Peek
PPS
Torlon 4203



21

Results: PEEK - Measured vs. Simulated

■ Compare Measured and Simulated Results

PEEK INSERTION LOSS (dB)
Resonance Index # 2
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The Future
➤ Testing procedure

– Reduce uncertainties - roughness, dispersion
– Improve fabrication techniques of samples - airbridges
– Test other contactor materials
– Verify impedance independence - test @ 25ohms
– Compare to other measurement techniques
– Increase number of resonant frequencies by building a

longer stub in ‘Tee’ structure – more data points
– Stock up on RedBull and…..

Find theoretical property values by computing elliptical integral

➤ Data
– Use findings to more accurately create matched

transmission through contactors at high frequencies
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Conclusion

■ Verified T-Resonator as method for determination of
dielectric constant and loss

■ Found material properties of Torlon ®, PEEK, Ultem® and
PPS at high frequency

■ Found published data diverges from measured material
properties at RF frequencies

■ Successfully correlated 2D and 3D simulations to measured
data
➤ Ansoft HFSS (3D simulator) and Ensemble® (2D MoM

planar EM simulator)
➤ Sonnet® (2D MoM planar EM simulator)
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Contents
• Test Socket Requirements
• Common BiTS Materials
• BiTS Materials Performance Properties
• ULTEM Resin Grades
• BiTS Trends
• ULTEM EPR Technology
• ULTEM Higher Heat Resins
• ESD Considerations
• Conclusions

Courtesy of  Aries Electronics, Inc.
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Test Socket Requirements I

• Heat Performance:   -55 to 170°C
• Dimensional Stability:

Isotropic Properties, Low CTE
• Flex & Tensile Strength & Stiffness:

Reduce twisting during assembly
Knit-line Strength, No Brittle failure

• Flame Retardancy: UL 94 V-0

Critical to Quality

Courtesy of Texas Instruments Incorporated



3/5/2003 KGR - 4

Test Socket Requirements II

• Processability: Shrinkage, Regrind, Release
• Thin-wall Molding
• Chemical Resistance to Solvents
• Low Out-gassing, Low Contamination
• Lubricity / Wear Resistance

Critical to Quality

Courtesy of Yamaichi Electronics
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Common BiTS Materials

• Chemical Resistance
• Thin Wall Flow

• Higher Heat
• Lubricity

Amorphous Thermoplastics Crystalline Thermoplastics

PAI PPSPESPEI PEEK LCP

• Dimensional Stability
• Low Out-gassing
• High Heat
• Ductility

Amorphous Crystalline
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ULTEM  Resin Benefits
• High Temperature Modulus &

Creep Resistance
• Flexural Strength & Stiffness
• Knit-line Strength & Elongation
• Resistance to Cleaners / Solvents
• Dimensional Stability, Low CTE
• Thin-Wall Flame Retardancy
• Ionic Purity 
• Injection Moldable w/ Low Flash
• Extrudable & Machinable
• Lower Specific Gravity
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Courtesy of Nepenthe
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Flex Modulus vs. Temperature

-40 to 200°C

ULTEM® 2210EPR

Constant Modulus over BiTS Operating Temps

PEEK

ULTEM

LCP

PPS
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2210EPR

Tensile & Flex Strength
Strength to Weight Ratios

0

20

40

60

80

100

120

140

160

180

1010R 2210R DU330 6210R 2110R PSU
20GF

PES
20GF

PPS
40% GF

LCP
40% GF

BiTSR i

M
Pa

TS/s.g.
FS/s.g.

ULTEM Resins

Strength to Weight Ratios
M

Pa

Highest Strength to Weight for Resin < $15 / #



3/5/2003 KGR - 9

Dimensional Stability

ULTEM flow

ULTEM x-flow

PPS x-flow

PPS flow

Low Isotropic Thermal Expansion 
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Thin Wall Flame Retardance
UL94 V0 rating of High Performance Polymers 
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ULTEM Resin Grades

ULTEM®

PEI
Resin

4001

2110R
2110EPR

2210R
2210EPR

6010R

6210R

4211

10 % GF

20 % GF

20 % GF
Easy Flow

20 % GF

Easy Flow

Un-reinforced
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Copolymer

Wear Resistant

1000 

1010REasy Flow
Base
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BiTS Trends
• Larger Geometries:

Full Surfaces, Larger Size
Increased Pin Counts

• Tighter Pitch:
1.27  1.0  0.8  0.65  0.5 mm

• Higher Heat Requirements
• Electro-Static Dissipative Materials:

106 –108 ohm-cm2

• Reduced Time for Tool Build & Modifications
• Color Coded Guide Rings

Courtesy of Hitachi, Ltd. & Enplas Corp.

Improved Thin Wall Flow; Material Development
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Flow Challenges for PEI Resins
• Amorphous Resins Have Broad Softening Range
• Addition of chopped fiberglass (10-40%) to PEI

+ Increase Modulus, Strength, HDT, FR
− Decreases Elongation & Melt Flow

• Improved Flow Typically Achieved Through
Lower Molecular Weight Polymer or Plasticizers
− Ductility, Knit-line Strength Sacrificed
− More Susceptible to Degradation
− Reduction of Tg & HDT

Existing PEI Flow Limited
Use in Tighter Pitch BiTS
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ULTEM EPR Technology
• Proprietary High Flow Additive Compatible with

Glass Reinforced Polyetherimide (10-40% GF)
+ Flow Enhanced by 30%, Improved Release
+ Tensile & Flexural Strength Maintained
+ HDT, CTE & Thermal Aging Maintained
+ UL94-V0 Rating Maintained at 0.4mm

ULTEM 2210EPR Success !
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ULTEM EPR Technology

ULTEM 2210

ULTEM 2210EPR
ULTEM 1010R

ULTEM 2210EPR Melt Processability: 
30% Improvement over ULTEM 2210
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ULTEM Higher Heat Resins
• High Heat ULTEM Resin Program

230 °C HDT Capable
Optimization of MW & Flow

• Addresses Higher Heat Needs
for Electronics Market

SMT Connector Technology
ULTEM-like Properties
More Cost Effective than PAI
and PEEK

• Commercializing 3Q 2003
Unfilled XH6050 Available
10% GF Available for Sampling

XH6050 (Developmental)
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Heat Sag, 30min.
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XH6050 (Developmental)
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ESD Considerations
Stat-Kon®

• Electrostatic Discharges can:
Ground to humans causing a shock
Destroy ICs; Effect Component Operation

• Stat-Kon Dissipative Additives (106-109)
Carbon Powder (10-20%, improves wear)
Carbon Fiber (~10%, wear, HDT, warp)

• Performance & Metrics
No initial charge; Prevents ESD
Insulates against high leakage currents
Volume & Surface Resistivity; Static Decay
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Conclusions

• ULTEM Resins May Satisfy Many Critical To
Quality Requirements for Test Sockets

• Thin Wall Flow Needs Are Addressed by
ULTEM EPR Technology – 30% Improvement

• Higher Heat ULTEM Resins Can Provide For
Max Use Temperatures up to 230 °C

• Custom Compound Resins Can be
Formulated to Address ESD, Wear,
Flow and Color Requirements
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