

Burn-in & Test Socket Workshop

March 3-6 , 2002 Hilton Phoenix East/Mesa Hotel Mesa, Arizona

Computer Society

BITS

COPYRIGHT NOTICE

• The papers in this publication comprise the proceedings of the 2002 BiTS Workshop. They reflect the authors' opinions and are reproduced as presented , without change. Their inclusion in this publication does not constitute an endorsement by the BiTS Workshop, the sponsors, or the Institute of Electrical and Electronic Engineers, Inc.

 There is NO copyright protection claimed by this publication. However, each presentation is the work of the authors and their respective companies: as such, proper acknowledgement should be made to the appropriate source. Any questions regarding the use of any materials presented should be directed to the author/s or their companies.

Technical Program

Invited Address Sunday 3/03/02 8:00PM

"The International Technology Roadmap For Semiconductors

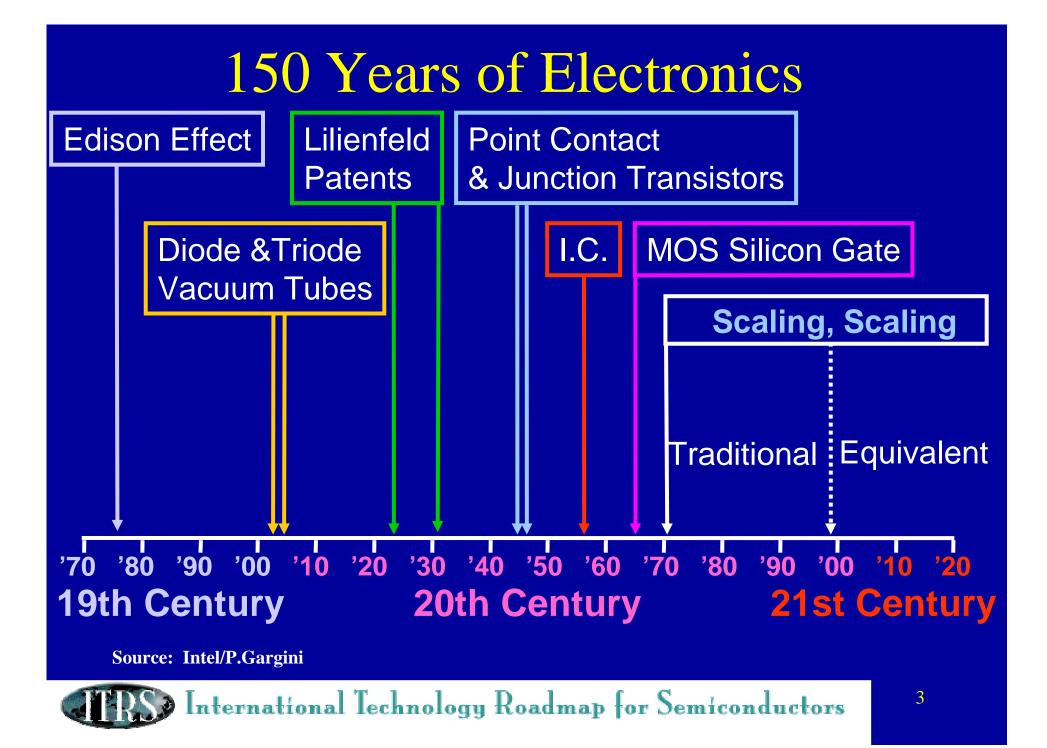
(ITRS) - Guidance for Global Technology and Manufacturing R&D Resources in the New Millenium"

> Alan K. Allan Staff Engineer Intel Corporation

The International Technology Roadmap for Semiconductors

[ITRS] - Guidance for Global Technology and Manufacturing R&D Resources in the New Millennium

> 03/03/02 BiTS Workshop – Hilton/Mesa, AZ Alan Allan / Intel Corporation


International Technology Roadmap for Semiconductors

Agenda

- ITRS Overview
- Scaling Benefits/Definition
- 1999 ITRS vs. 2001 ITRS
- Review of Some Challenge Examples

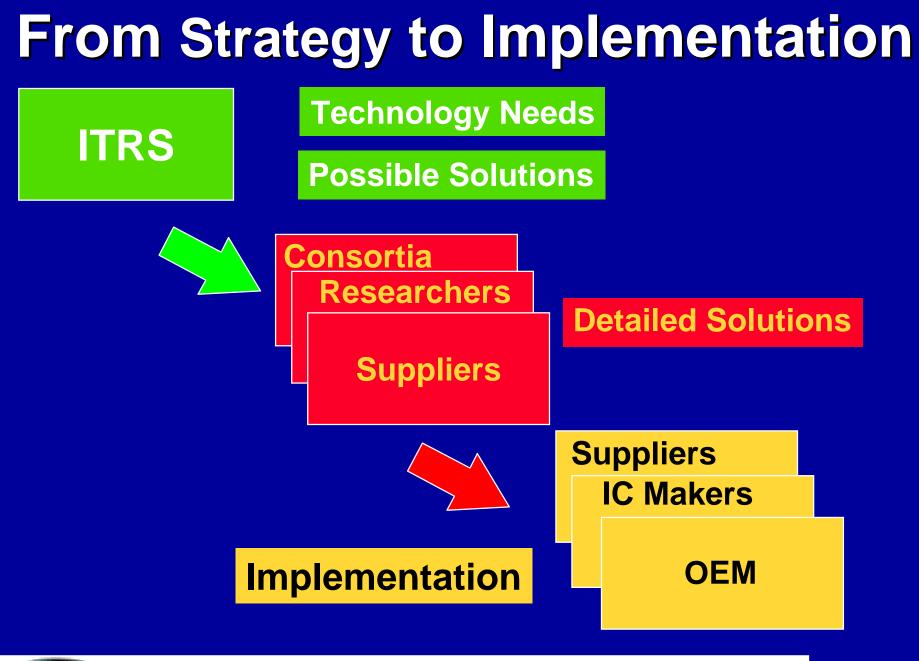
 ORTC (Scaling, Cell Size, Frequency)
 - Lithography
 - Test
 - Factory Integration
- Summary/Q&A

S International Technology Roadmap for Semiconductors

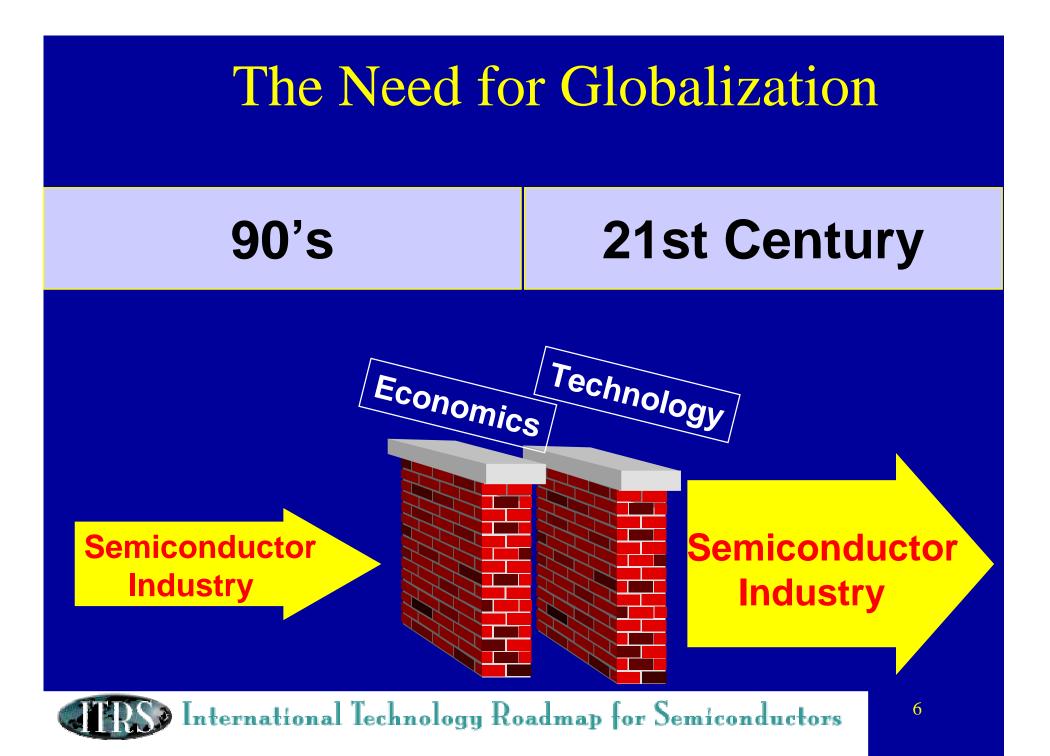
THE INTERNATIONAL TECHNOLOGY ROADMAP FOR SEMICONDUCTORS (ITRS) GOALS:

• Present an **industry-wide consensus** on the "best current estimate" of our future research and development needs out to a 15-year horizon.

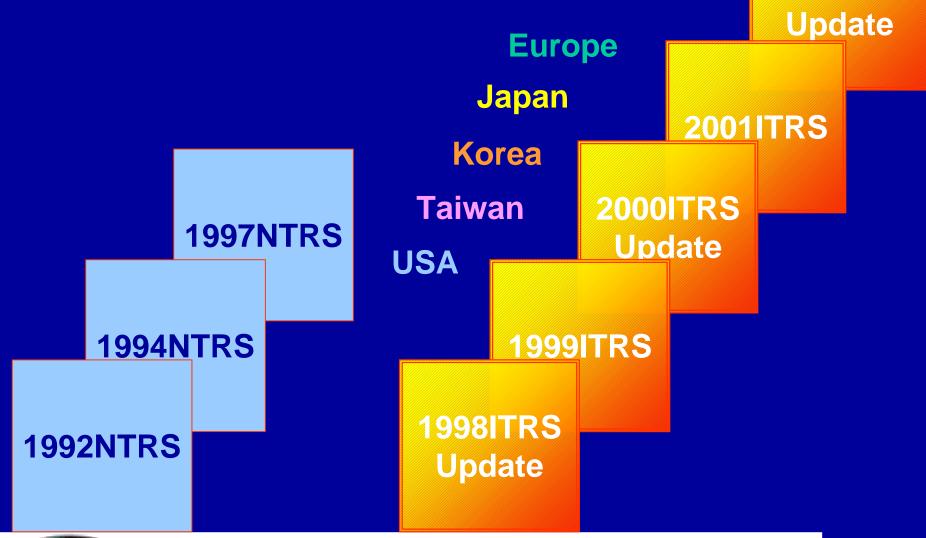
• Provide a **guide** to the efforts of research organizations/sponsors (industry, government, and universities.)


...Based on **premise** of continuing the four-decade-long trends of an industry that has distinguished itself by:

rapid pace of improvement in its products

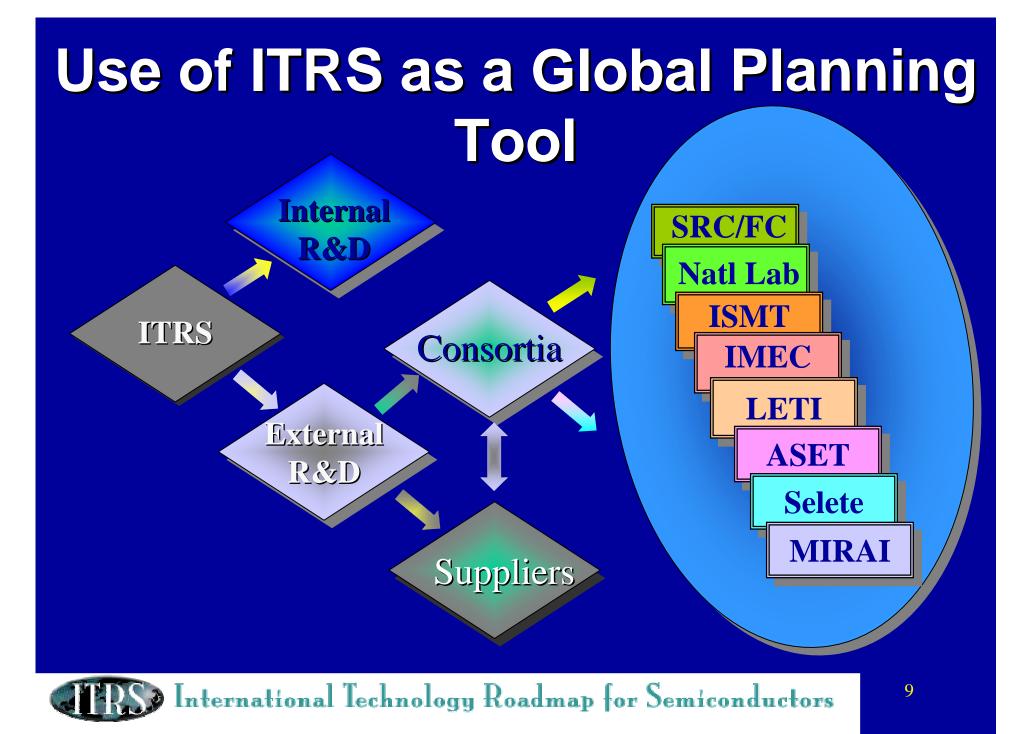

 exponential improvement of manufacturing capability and productivity to reduce the minimum feature sizes[SCALING] and cost/function used to fabricate integrated circuits.

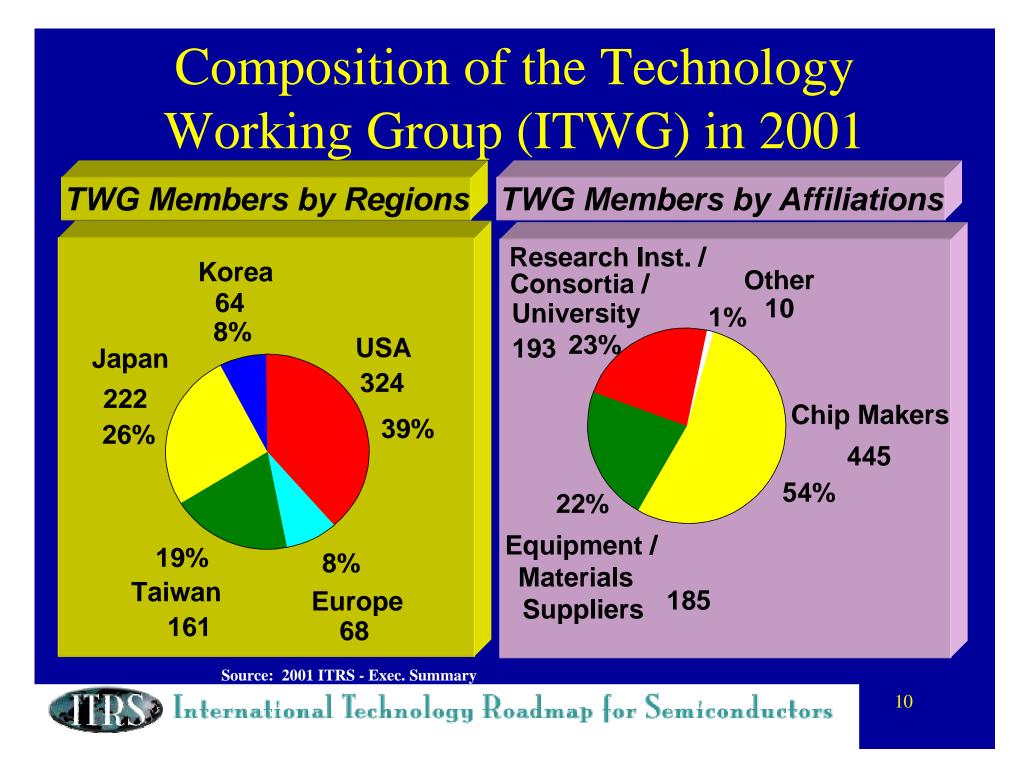
Source: 1999 ITRS, 11/99


RSS International Technology Roadmap for Semiconductors

International Technology Roadmap for Semiconductors

Roadmap Editions


RSS International Technology Roadmap for Semiconductors


2002ITRS

The Plan for Globalization - ITRS Working Groups

International Technology	International Crosscut Technology Working Group (ICCT WG)							
Working Groups (ITWG)	Environment Safety & Health	Metrology	Defect Reduction	Modeling & Simulation				
Design								
Test								
Front End Processes	http		coma	toch				
Interconnect			.sema					
Lithography	org/	oublic	resou	rces/				
Process Integration	inde	x.htm						
Assembly & Packaging								
Factory Integration								

No International Technology Roadmap for Semiconductors

2001 ITRS Renewal Key Accomplishments

- 130nm node 1-year pull-in to 2001 (2-yr cycle), validating the 1999 ITRS "Best Case")
- 90nm trend rate (0.7x/node) correction to 2004 (3-yr cycle), vs 2006 in 1999 I TRS
- Added detail to DRAM Cell design improvement rate limitations
- Affordable Lithography Field Size/Reticle limitations
 identified/supported
- MPU Physical Gate Length Performance Trend I dentified
- Published full Renewal Online (order CDs) http://www.sematech.org/public/resources/index.htm

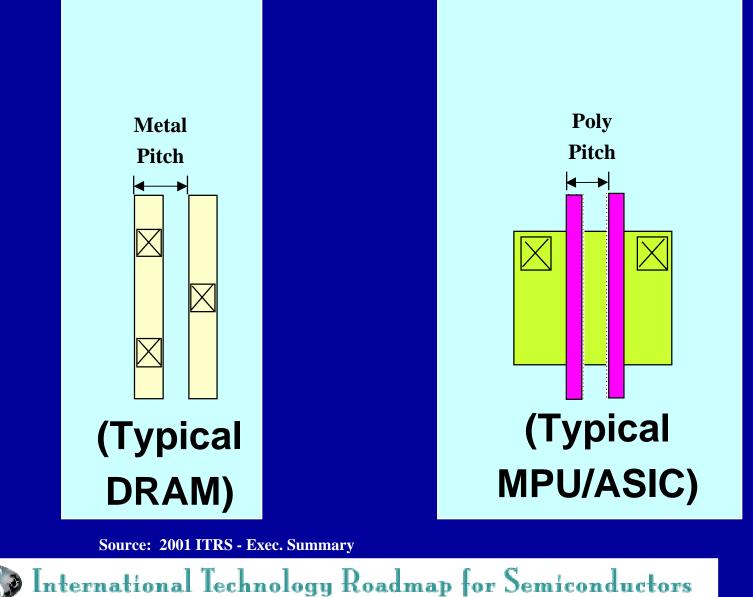
International Technology Roadmap for Semiconductors

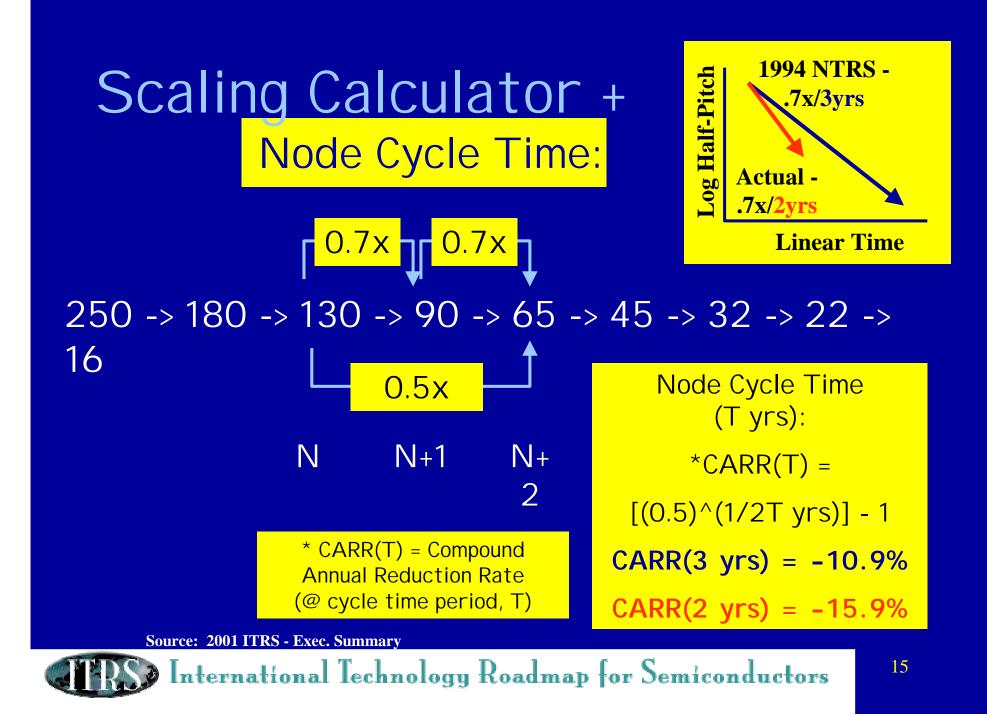
MOS Transistor Scaling Impacts Everything!

Parameter	Scaled Voltage	Constant Voltage
Supply Voltage (Vdd)	S	1
Channel Length (Lg, Le)	S	S
Channel Width (W)	S	S
Gate Oxide Thickness (Tox)	S	S
Substrate Doping (N)	1/s	1/s
* Drive Current (Id)	S	1/s
Gate Capacitance (Cg)	S	S
Gate Delay	S	S ²
Active Power	S ³	S

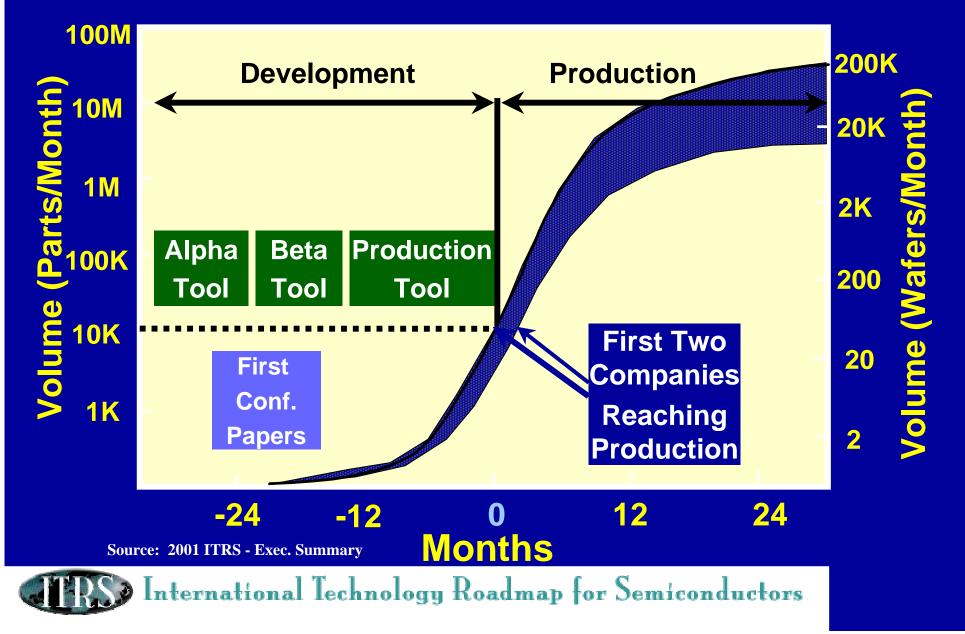
Does Not Include Carrier Velocity Saturation

*

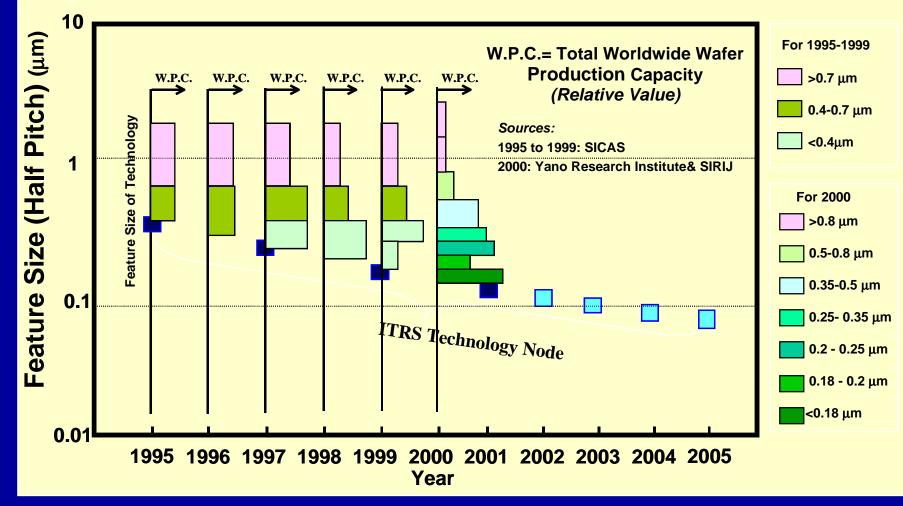

International Technology Roadmap for Semiconductors


MOS Transistor Scaling (1974 to present) S=0.7 [0.5x per 2 nodes]

Half Pitch (= Pitch/2) Definition



2001 I TRS SCALING Timing Highlights


- The DRAM Half-Pitch (HP) remains on a 3-year-cycle trend after 130nm/2001
- The MPU/ASIC HP remains on a 2-year-cycle trend until 90nm/2004, and then remains equal to DRAM HP (3-year cycle)
- The MPU Printed Gate Length (Pr GL) and Physical Gate Length (Ph GL) will be on a 2-year-cycle until 45nm and 32nm, respectively, until the year 2005
- The MPU Pr GL and Ph GL will proceed parallel to the DRAM/MPU HP trends on a 3-year cycle beyond the year 2005
- The ASIC/Low Power Pr/Ph GL is delayed 2 years behind MPU Pr/Ph GL
- ASIC HP equal to MPU HP

Reso International Technology Roadmap for Semiconductors

Production Ramp-up Model and Technology Node

Technology Node vs Actual Wafer Production Capacity

Source: 2001 ITRS - Exec. Summary

Some Key Challenges

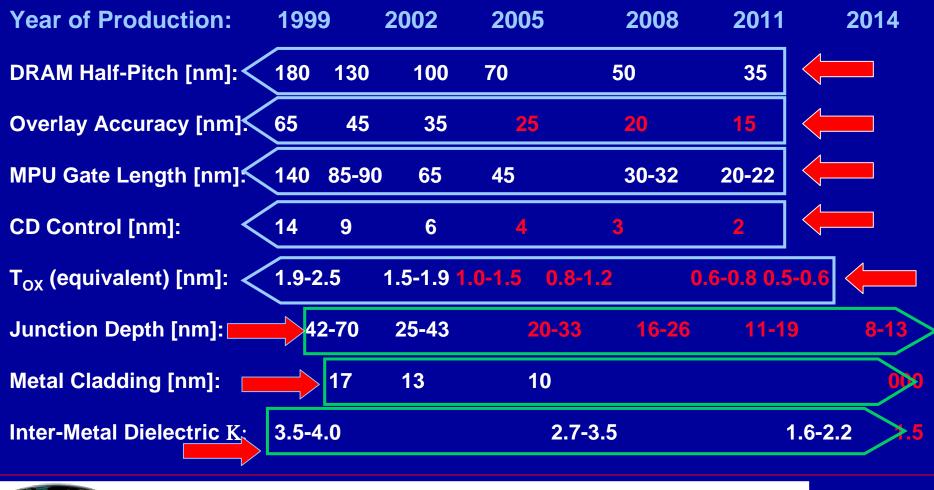
- "Red Brick Wall Shifts" 1999 vs 2001
- ORTC Scaling Goals
- Device Scaling Challenges
- ITWG Challenges Examples

International Technology Roadmap for Semiconductors

The "Red Brick	Wa	"	- 20	01 I]	FRS	s vs	199	
Table 1. 200	01 St	atus	of Re	d Brick	Wall			
Year of production	2001	2003	2005		2007	2010	2016	
DRAM half-pitch (nm)	130	100	80	5	65	45	22	
Overlay accuracy (nm)	46	35	28		23	18	9	
MPU gate length (nm)	90	65	45		35	25	13	
CD control (nm)	8	5.5	3.9		3.1	2.2	1.1	
T _{ex} (equivalent) (nm)	1.3-1.6	1.1-1.6	0.8-1.3	201	0.6-1.1	0.5-0.8	0.4-0.5	
Junction depth (nm)	48-95	33-66	24-47		18-37	13-26	7-13	
Metal cladding thickness (nm)	16	12	9		7	5	2.5	
Intermetal dielectric constant, k	3.0-3.6	3.0-3.6	2.6-3.1		2.3-2.7	2.1	1.8	
Table 2. 199	Table 2. 1999 Status of Red Brick Wall							
Year of production	1999	2002	2005	March 1	2008	2011	2014	
DRAM half-pitch (nm)	180	130	100		70	50	35	
Overlay accuracy (nm)	65	45	35	S.S. 	25	20	15	
MPU gate length (nm)	140	85-90	65		45	30-32	20-22	
CD control (nm)	14	9	6		4	3	2	
T _{ex} (equivalent) (nm)	1.9-2.5	1.5-1.9	1.0-1.5	235	0.8-1.2	0.6-0.8	0.5-0.6	
Junction depth (nm)	42-70	25-43	20-33		16-26	11-19	8-13	
Metal cladding thickness (nm)	17	13	10		0	0	0	

Source: Semiconductor International - http://www.e-insite.net/semiconductor/index.asp?layout=article&articleId=CA187876

1.5


<1.5

<1.5

Intermetal dielectric constant, k 3.5-4.0 2.7-3.56 1.6-2.2

Roadmap Acceleration and Deceleration 2001 versus 1999 Results

RSS International Technology Roadmap for Semiconductors

2001 ITRS ORTC Node Tables – w/Node Cycles [3-Year Node Cycle] [Node = DRAM Half-Pitch (HP)]

Table 1a Product Generations and Chip Size Model Technology Nodes—Near-term Years

YEAR OF PRODUCTION	2001	2002	2003	2004	2005	2006	2007
DRAM ½ Pitch (nm)	130	115	100	90	80	70	65
MPU/ASIC ¹ / ₂ Pitch (nm)	150	130	107	90	80	70	65
MPU Printed Gate Length (nm) ††	90	75	65	53	45	40	35
MPU Physical Gate Length) (nm)	65	53	45	37	32	28	25
ASIC/Low Power Printed Gate Length (nm) ††	130	107	90	75	65	53	45
ASIC/Low Power Physical Gate Length) (nm)	90	75	65	53	45	37	32

[MPU Gate Length Cycle (GL)]:

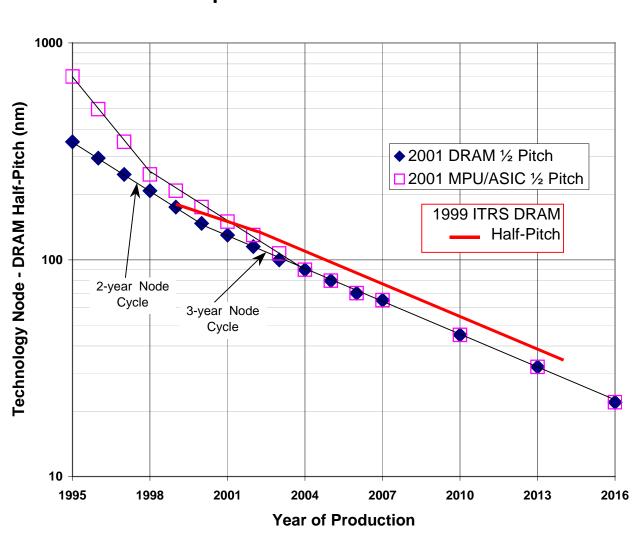
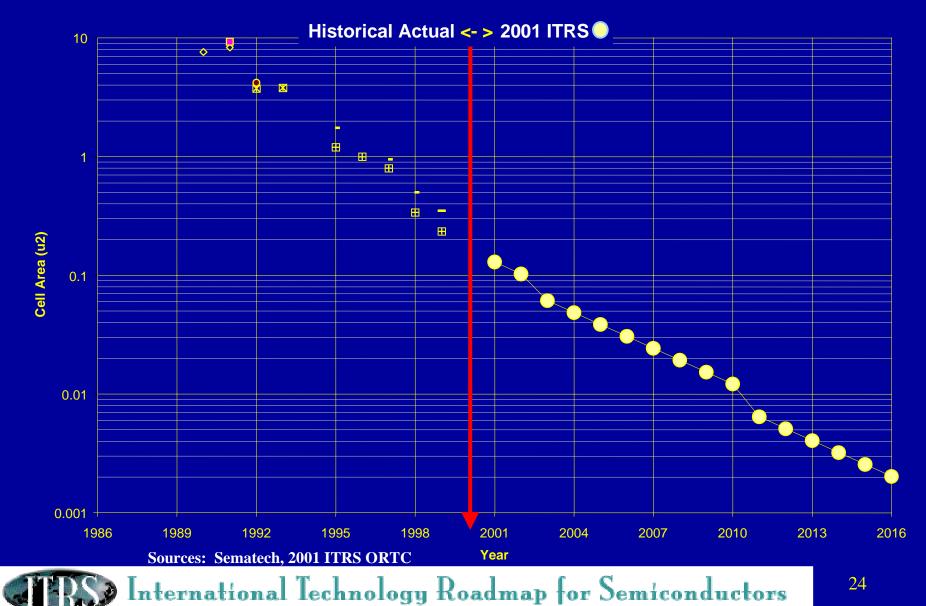

[2-year cycle] [3-year cycle]

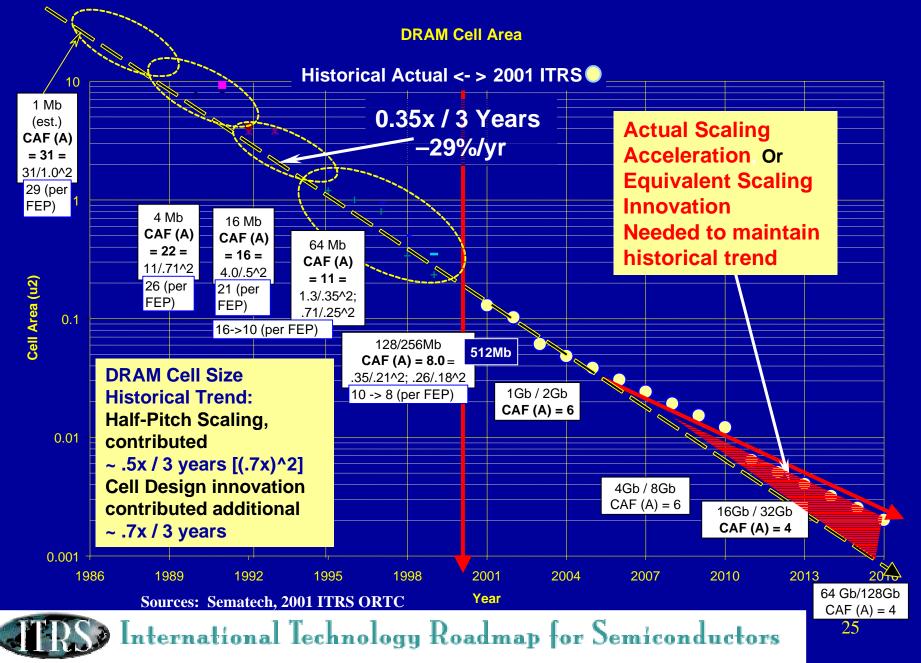
Table 1b Product Generations and Chip Size Model Technology Nodes—Long-term years

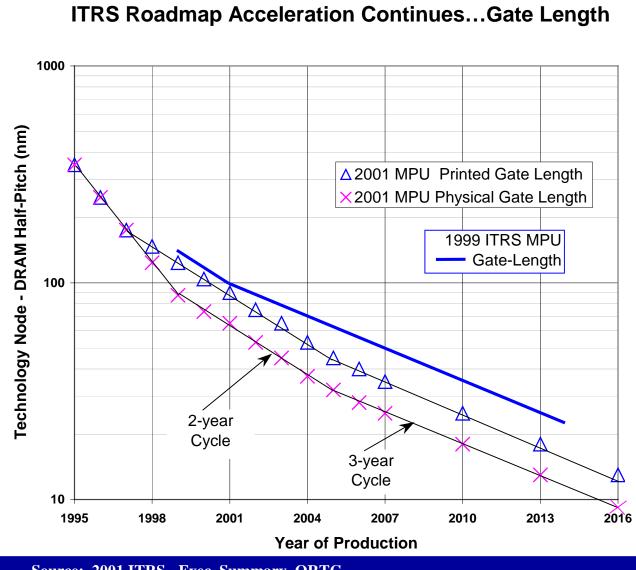
YEAR OF PRODUCTION	2010		2013	2016
DRAM ¹ / ₂ Pitch (nm)	45		32	22
MPU/ASIC 1/2 Pitch (nm)	45]	32	22
MPU Printed Gate Length (nm) ††	25		18	13
MPU Physical Gate Length) (nm)	18		13	9
ASIC/Low Power Printed Gate Length (nm) ††	32		22	16
ASIC/Low Power Physical Gate Length) (nm)	22		16	11

[MPU HP/GL Cycle]: International Technology Roadmap for Semiconductors



ITRS Roadmap Acceleration Continues...Half Pitch


Source: 2001 ITRS - Exec. Summary, ORTC


DRAM Cell Area History / 2001 ITRS Model

DRAM Cell Area

DRAM Cell Area History / 2001 ITRS Model

Source: 2001 ITRS - Exec. Summary, ORTC

International Technology Roadmap for Semiconductors

2001 ITRS ORTC MPU Frequency Tables – w/Node Cycles

Table 4c Performance and Package Chips: Frequency On - Chip Wiring Levels—Near - Term Years

YEAR OFPRODUCTION	2001	2002	2003	2004	2005	2006	2007
DRAM ¹ / ₂ Pitch (nm)	130	115	100	90	80	70	65
MPU/ASIC ½ Pitch (nm)	150	130	107	90	80	70	65
MPU Printed Gate Length (nm)	90	75	65	53	45	40	35
MPUPhysical Gate Length (nm)	65	53	45	37	32	28	25
Chip Frequency (MHz)							
On-chip local clock	1,684	2,317	3,088	3,990	5,173	5,631	6,739
Chip-to-board (offchip) speed (high-performance, for peripheral buses)[1]	1,684	2,317	3,088	3,990	5,173	5,631	6,739
Maximum number wiring leve ls maximum	7	8	8	8	9	9	9
Maximum number wiring leve ls minimum	7	7	8	8	8	9	9

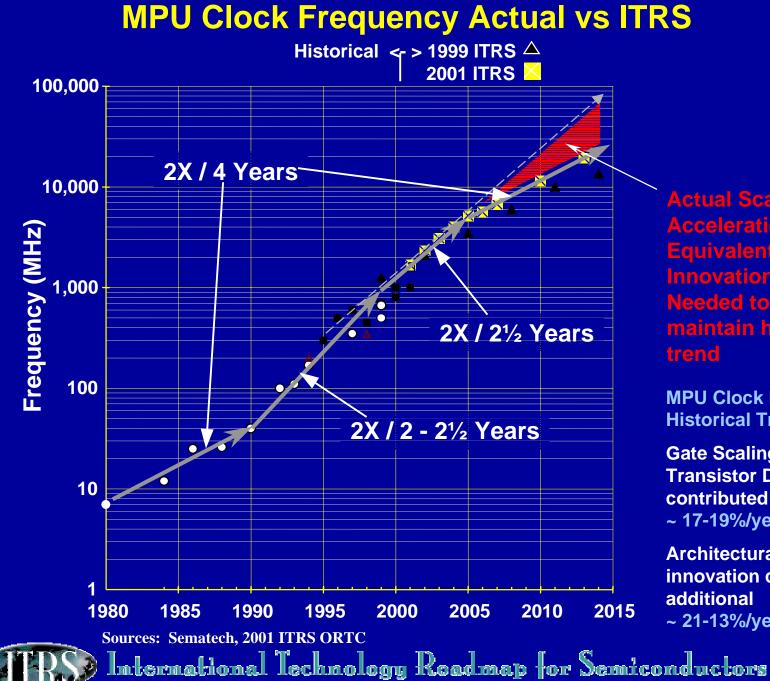

 [2-Yr GL Cycle;
 then 3-Yr]

 Table 4d Performance and Package Chips: Frequency, OnChip Wiring Levels-Long-term

45 45 25 18 11,511	32 32 18 13		22 22 13 9	-
25 18	18 13		13	-
18	13			-
			9	-
11.511				
11.511				
,•	19,348		28,751	
11,511	19,348		28,751	
10	10		10	
9	9		10	[3 0
-	10	10 10 9 9	10 10 9 9	10 10 10

Sources: 2001 ITRS ORTC

Actual Scaling Acceleration, Or Equivalent Scaling Innovation **Needed to** maintain historical trend

MPU Clock Frequency Historical Trend:

Gate Scaling, **Transistor Design** contributed ~ 17-19%/year

Architectural Design innovation contributed additional ~ 21-13%/year 28

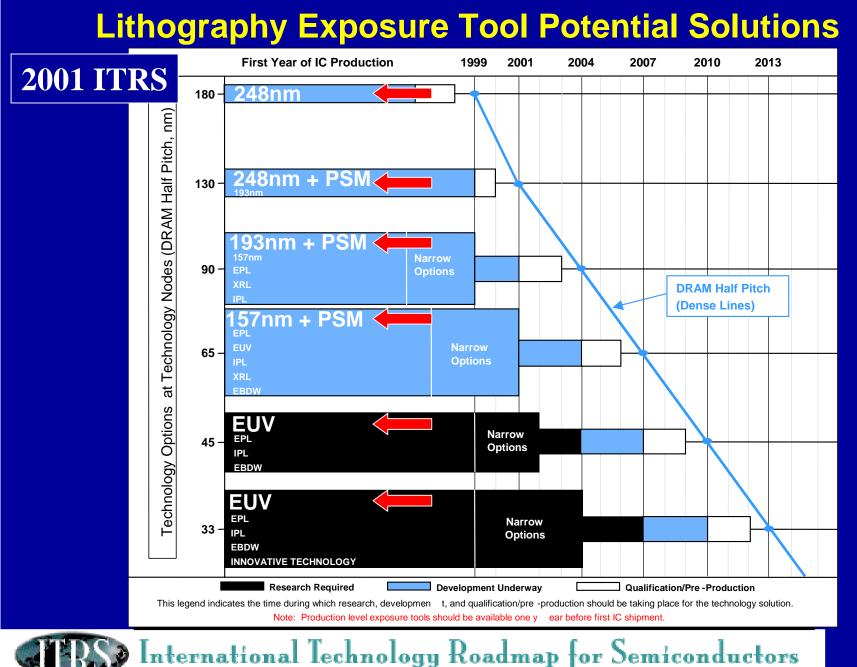
Some Examples of ITWG Major Challenges

ITWG

- Design
- Lithography
- Test
- Front End Process
- Interconnect
- PIDS, Emerging Devices
- Assembly & Packaging
- Factory Integration

Cross ITWG

- Environment, Safety, Health
- Metrology
- Modeling and Simulation
- Yield Enhancement


Lithography ITWG Report

ITRS Conference

November 29, 2001 Santa Clara, CA

International Technology Roadmap for Semiconductors

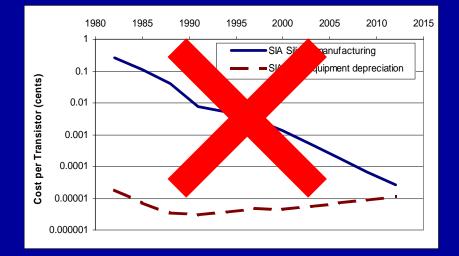
Difficult Challenges: Near Term

Five difficult challenges ≥ 65 nm before 2007.	Summary of issues
Optical and post-optical mask fabrication	 Registration, CD control, defectivity, and 157 nm films; defect free multi-layer substrates or membranes. Equipment infrastructure (writers, inspection, repair).
Cost control and return-on- investment (ROI)	 Achieving constant/improved ratio of tool cost to throughput over time. Cost-effective masks. Sufficient lifetimes for the technologies,
Process control	 Processes to control gate CDs to less than 2 nm (3σ) Alignment and overlay control to < 23 nm overlay.
Resists for ArF and F ₂	 Outgassing, LER, SEM induced CD changes, defects ≤ 32 nm.
CaF ₂	Yield, cost, quality.

📡 International Technology Roadmap for Semiconductors

Difficult Challenges: Long Term

Five difficult challenges < 65 nm beyond 2007.	Summary of issues
Mask fabrication and process control	 Defect-free NGL masks. Equipment infrastructure (writers, inspection, repair). Mask process control methods.
Metrology and defect inspection	 Capability for critical dimensions down to 9 nm and metrology for overlay down to 9 nm, and patterned wafer defect inspection for defects < 32 nm.
Cost control and return on investment (ROI)	 Achieving constant/improved ratio of tool cost to throughput. Development of cost-effective post-optical masks. Achieving ROI for industry with sufficient lifetimes for the technologies.
Gate CD control improvements; process control; resist materials	 Processes to control gate CDs < 1 nm (3 sigma) with appropriate line-edge roughness. Alignment and overlay control methods to < 9 nm overlay.
Tools for mass production	 Post optical exposure tools capable of meeting requirements of the Roadmap.


S International Technology Roadmap for Semiconductors

2001 ITRS Test Chapter

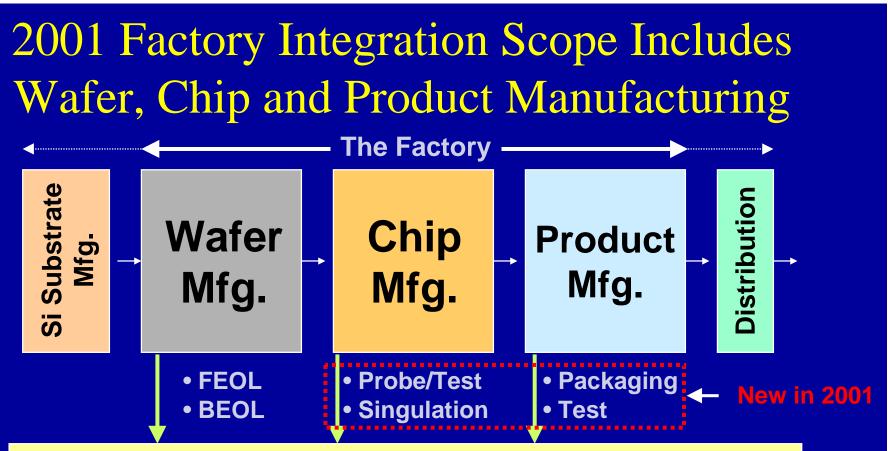
ITRS Test ITWG Don Edenfeld

Scaling Component Test Cost

- Recent steps have enabled test cost to begin to scale across technology nodes
 - Equipment reuse across nodes
 - Increasing test throughput
- Challenge remains in most segments, especially high speed and high integration products

Dismantling the Red Brick Walls

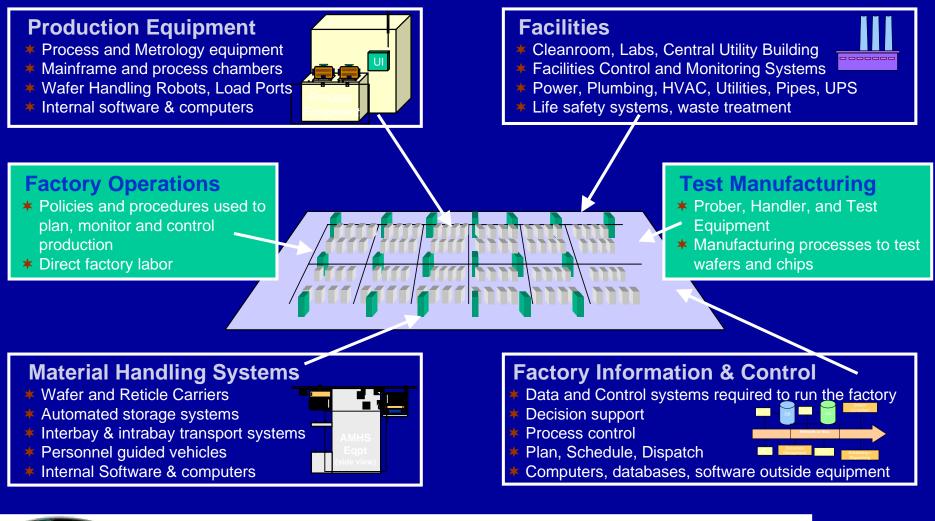
- Design For Test enabling has begun to remove many of the roadblocks that appeared in the 1997 and 1999 roadmaps
 - Test is becoming integrated with the design process
 - Improvements demonstrated in capability and cost
- Continued research is needed into new and existing digital logic fault models toward identification of true process defects
- Development of Analog DFT methods must advance
 - Formalization of analog techniques and development of fault models


Test Software Standards Focus

- **Standards** for test equipment interface & communication are needed to decrease equipment factory integration time
 - Improve equipment interoperability to reduce factory systems integration time
 - e.g, built into 300mm equipment specifications
- **Standards** for ATE software and test program generation are needed to decrease test development effort and improve time to market
 - Lower the barrier for selecting the optimal equipment
- Increased focus for **standards** development and adoption of existing standards

2001 ITRS Factory Integration ITWG

Jeff Pettinato



The Factory is driven by Cost and Productivity:

- ? Reduce factory capital and operating costs per function
- ? Enable efficient high-volume production with operational models for varying product mixes (high to low) and other business strategies
- ? Increase factory and equipment reuse, reliability, and overall efficiency
- ? Quickly enable process technology shrinks and wafer size changes

Factory Integration Requirements and Solutions are Expressed through 6 Functional Areas

International Technology Roadmap for Semiconductors

40

2001 Difficult Challenges

> 65nm through 2007

Managing Complexity

- Quickly and effectively integrating rapid changes in semiconductor technologies and market conditions
- Factory Optimization
 - Productivity increases are not keeping pace with needs
- Flexibility, Extendibility, Scalability
 - Ability to quickly convert to new semiconductor technologies while reusing equipment, facilities, and skills

< 65nm after 2007

- Post CMOS Manufacturing Uncertainty
 - Inability to predict factory requirements associated with post CMOS novel devices

450mm Wafer Size Conversion

 Timing and manufacturing paradigm for this wafer size conversion

Summary

- Technology acceleration continued with 2001 ITRS
- DRAM half-pitch is expected to return to a 3year cycle after 2001 but....so we have said before
- The Red Brick Wall is still there but it has become permeable
- Innovation will be necessary, in addition to technology acceleration, to maintain historical performance trends

Summary(cont.)

- Major challenges have been identified by each of the ITWGs – many opportunities for innovative R&D
- Many material transitions are needed, but not sufficient, in the next few years to maintain the scaling pace
- Close coordination of design, process integration and packaging is required to meet system requirements in the future
- Please visit the online resources at: http://www.sematech.org/public/resources/inde x.htm

Words to the Wise...

- "Word.. without Action.. is Dead" James ca 1st Century
- "Simplest..is Best" William of Ockham, ca 13th Century
- "Better..Faster..Cheaper" Craig Barrett, ca 21st Century (and also daily)
- "Talk..is Cheap" Semiconductor Suppliers

Backup

[Test] Summary

Can ATE

instruments catch

up and keep up

with high speed

serial performance trends?

How can we improve manageability of the divergence between validation and manufacturing equipment?

What is the cost and capability optimal SOC test approach?

How can we make test of complex SOC designs more cost effective?

Can DFT and BIST mitigate the mixed signal tester capability treadmill? What other opportunities exist?

Will increasing test data volume lead to increased focus on Logic BIST architectures? What are the other solutions? Can DFT mitigate analog test cost as does in the digital domain?

What happens when high speed serial interfaces become buses?

Will market dynamics justify development of next generation functional test capabilities?

emiconductors

46

nternational Techno