

Burn-in & Test Socket Workshop

March 3-6 , 2002 Hilton Phoenix East/Mesa Hotel Mesa, Arizona

Computer Society

BITS

COPYRIGHT NOTICE

• The papers in this publication comprise the proceedings of the 2002 BiTS Workshop. They reflect the authors' opinions and are reproduced as presented , without change. Their inclusion in this publication does not constitute an endorsement by the BiTS Workshop, the sponsors, or the Institute of Electrical and Electronic Engineers, Inc.

 There is NO copyright protection claimed by this publication. However, each presentation is the work of the authors and their respective companies: as such, proper acknowledgement should be made to the appropriate source. Any questions regarding the use of any materials presented should be directed to the author/s or their companies.

Technical Program

Session 5 Tuesday 3/05/02 1:00PM

Modeling, Analysis and Characterization

"Electrical Modeling And Contactor Performance In A RF System"

Jim Adley - Johnstech International Corporation Eric Leung - Johnstech International Corporation Jeff Sherry - Johnstech International Corporation

"Leaded 2mm Contactors: Measuring And Modeling To 10 GHz"

Tom Strouth - GigaTest LabsOrlando Bell - GigaTest LabsGary Otonari - GigaTest LabsEric Bogatin - GigaTest LabsJeff Sherry - Johnstech International Corporation

"Force Measurement On Sockets And Contactors"

Richard Block - Advanced Micro Devices **Rafiq Hussain** - Advanced Micro Devices

Electrical Modeling and Contactor Performance in a RF Test System

0.5 mm Pitch BGA

Jim Adley, R&D Manager Eric Leung, R&D Engineer Jeff Sherry, R&D Engineer Johnstech International

Johnstech"

Discussion Topics

- Modeled Data
- Measured Data
- Comparative Data
- Equivalent Circuit Model
- Conclusion

Introduction: 0.5 mm Pitch BGA Contactor

Cross sectional view of a contactor

Modeled Data

- Modeling was done using Agilent HFSS software
- An AutoCAD drawing, including the actual structure built by GigaTest Labs, was imported into HFSS
- Data obtained from simulation includes:
 - Return Loss S₁₁
 - Insertion Loss S₂₁

Modeled Data

▼ 0.5 mm pitch BGA model from an AutoCAD file

Modeled Data - S₁₁

 This is data from the HFSS model of return loss by the actual 0.5 mm BGA structure tested by GigaTest Labs

Johnstech"

Modeled Data - S₂₁ & S₁₁

 This is data from the HFSS model of return loss by the actual .5 mm BGA structure tested by GigaTest Labs

Modeled Data

HFSS Capabilities

- Contact design parameters
- Load board design effects
- Device pad interactions
- Expected performance
- Effects of tolerances
- Interaction between components in system (device, contactor, handler, etc.)
- Trends

- GigaTest Labs tested a 0.5 mm pitch Ball Series contactor
- GigaTest Labs used a surrogate device -Short, Open, Load, Thru (SOLT) to conduct testing
- Data was measured by GigaTest Labs through probing from the back side of a non-optimized load board

Circuit

 GigaTest Labs used a micro probe station for measuring two adjacent contacts S-parameters

Johnstech

The 0.5 mm pitch BGA housing and BGA surrogate package

Johnstech"

Comparative Data

Comparative Data

0.5mm Pitch BGA Adjacent Contact Modeled vs. Measured Test Data 0 -0.25 -0.5 Insertion Loss (dB) -0.75 -1 dB Measured Loss Point @ 10.3 GHz -1 -1.25 -HFSS 0.5mm Pitch Adjacent BGA Contact Model -1.5 --- Measured Test Data from GigaTest Labs for 0.5mm Adjacent BGA Contact (Non-Optimum pads) -1.75 Johnstech -2 2 3 8 0 1 5 6 7 9 10 4 Frequency (GHz) 14

- Characterize the parasitic effects
- Simulate the contact with an equivalent circuit for time domain response
- Integrate the contactor into a system level simulation to:
 - Reduce test cost and time
 - Optimize system performance

Johnstech"

- Measure the S-parameters for short-, open- and thru- fixtures from two adjacent contacts
- Use measured data and Agilent Advanced Design System (ADS) for model extraction and verification
- Compare measured and ADS simulated insertion and return loss

 This figure shows the Equivalent Circuit Model for two adjacent 0.5 mm BGA contacts

Johnstech"

0.5mm Pitch BGA Adjacent Contact ADS Equivalent Circuit Model vs. Measured Test Data

 Phase comparison shows that the contact is linear over the frequency model

19

Johnstech

Equivalent Circuit Model Development

Equivalent Circuit Model Development

Conclusion

- For leading edge RF applications such as 0.5 mm pitch, modeling is helpful to achieve optimal system performance
- Accurate equivalent circuit models can represent contact behavior and help in determining complete system response
- Modeling can help RF engineers save time and money in development by correctly predicting system results and eliminating or reducing hardware builds and test iterations

Leaded 2 mm Contactors: Measuring and Modeling to 10 GHz

Tom Strouth, Orlando Bell, Gary Otonari, Eric Bogatin GigaTest Labs, www.GigaTest.com and Jeff Sherry Johnstech, www.Johnstech.com

Outline

- Contactors
- Fixturing
- Measurement set up
- Modeling process
- Results
- Using the model for simulation

32 lead MLP2 Contactor

Johns<u>tech</u>"

Analysis

- Goal
 - Create an equivalent circuit model for two adjacent leads that predicts the measured S parameters
 - Use this verified, high bandwidth model for performance evaluation
- Strategy
 - ✓ Use measurements of open, short, thru topologies
 - De-embed the fixturing
 - ✓ Use simplest model for accurate, 10 GHz bandwidth
 - Use SPICE model of de-embedded contactor for performance simulation

Measurement Configurations

Surrogate Package: Enables configuring open, short, thru connections for edge and corner leads thru -short open

Instrument Set Up

Probing From the Back Side

Probing using microprobes and a GigaTest Probe Station

Modeling the System with Agilent ADS

Johnstech"

Methodology

- Measure S parameters of calibration vias in bare fixture board
- Extract model for just the fixture
- Select two adjacent corner leads (longest leads)
- Measure open, short, thru for the pair of leads
- Extract model of contactor pins and surrogate package
- Use de-embedded contactor circuit model to simulate performance

Slide - 10

Corner Leads (worse case): Open/short Measurements

Optimized Model: Open

Impedance of one trace

Coupling between traces

Solid Line is Simulated

Johns<u>tech</u>"

Slide - 12

Optimized Model: Open

Reflection

Transmission

Open provides mutual capacitance info

Johns<u>tech</u>"

Optimized Model: Short

Coupling between traces

Solid Line is Simulated

Johnstech"

Slide - 14

Optimized Model: Short

Reflection

Transmission (coupling)

Short provides mutual inductance info

Johnstech"

Slide - 15

Optimized Model: Loop-Thru

Reflection

Transmission

Bandwidth of the model > 10 GHz

Johnstech"

Summary of Extracted Parameters

De-Embedded Insertion and Return Loss of Contactor

Meets specification: < -20 dB, below 10 GHz

Meets specification: > -1 dB, below 10 GHz

Note: load board is not optimized for performance, standard contactor - <u>not</u> enhanced contactor

Johns<u>tech</u>"

Transient Simulation Using De-embedded Contactor Model

Specs:

- De-embedded contactor model
- ✓ 20 psec rise time
- ✓ 50 Ω source, termination
- ✓ Differential drive

Transient Simulation with 20 psec Rise Time

Note: load board is not optimized for performance, standard contactor - <u>not</u> enhanced contactor

Gig**aTest** Labs

BiTS 2002

Conclusions

- A contactor model can be de-embedded from S-parameter measurements
- A simple model matches measured data up to at least 10 GHz. (model could have more bandwidth)
- A model extracted from frequency domain measurements can be used in a transient simulation.

Force Measurement on Sockets and Contactors

2002 Burn-in and Test Socket Workshop March 3 - 6, 2002

Presenter: Richard Block

Rafiq Hussain

Agenda

- Force Issues in Test and Burn-In Env.
- Force Measurement Unit
- Experimentation & Test Data
- Conclusions
- Looking Forward

Force Issues in Test and Burn-In Env.

- Bent Pins / Deformed Balls
- Overdriving of Pogos
- Crack/Chipped Die or Pkg
- Pkg warping
- Force Distribution

Force Measurement Unit

- Simple Design
 - 1 transducer
 - 2 spacers
 - 1 digital display (giving real-time force readouts to 0.1 lb accuracy)
- Location
 - Replaced support under PCB and Socket

Force Measurement on Sockets & Contactors

Board Deflection

- Motherboard deflection was necessary for transducer to take measurements
 - Motherboard was 62 mils thick
 - Transducer max deflection was 3 mils for 250lbs
 - Deflection did not create any noticeable error in force readout
 - 2 lb, 5 lb, and 10 lb weights were used for confirmation

Experimentation

- FMU was used for various validations
 - First Experiment
 - Actual force (g/pin) vs. Vendors Spec (g/pin)
 - LLCR measurements were taken at various forces
 - Passing tests consisted of "no opens pins"
 - Both Shorted and Thermal Vehicle pkgs were used

Actual Force vs. Vendor Spec

Jan 10, 2002

Force Measurement on Sockets & Contactors

Experimentation cont.

- FMU was used for various validations
 - Second Experiment
 - Insertion study to find optimal force vs. Pogo life
 - •First run:

-100,000 insertions were made at ideal force first experiment

-LLCR measurements were taken periodically to see if resistance values increased

•Second run:

-100,000 insertions at different force

-LLCR measurements were compared to first run

Insertion Life vs. Force

Vendor	Insertions	ave ohms	Vendor	Insertions	ave ohms
А	Low	22.02	D	Low	23.37
18 g/p	25 k	22.04	16 g/p	25 k	22.75
	50 k	22.10		50 k	22.70
	75 k	22.09		75 k	22.57
B (1)	Low	23.11	E	Low	22.24
12 g/p	25 k	23.27	25 g/p	25k	22.10
	50 k	22.93		50k	22.34
	75 k	22.68		75k	22.30
				96 k	22.14
С	Low	22.82	F	Low	22.25
17 g/p	40 k	22.04	16 g/p	25 k	22.47
	80 k	22.16		50 k	22.30
				75 k	22.38

Jan 10, 2002

Force Measurement on Sockets & Contactors

Insertion Life vs. Force cont.

- Insertions were done at a greater force then first series of insertions.
 - ~3 to 4 g/p depending on initial required force
- Vendor D had pin failures at this higher force

Vendor	Insertions	ave ohms	
B (1)			
	Low	23.11	
15 g/p	30 k	23.41	
	50 k	23.21	
	70 k	23.21	
D			
	Low	22.57	
19 g/p	25 k	22.73	
	40 k	22.40	
E			
	Low	22.24	
28 g/p	25k	26.67	
	75k	26.35	

Conclusions

- Insight into vendors tolerance control and machining ability
- Confirmation of test forces on DUT with reaction forces based on complete test setup, not individual pieces tested separately
- More accurate qualification for compression based sockets

Looking Forward

- Die size Transducers
- Force variation across die/pkg

Transducer for Handlers Example

Distribution of Force over Die/Pkg Example

- Check Force across die surface
 - Check flatness of thermal head
 - Check that socket is level

Force Measurement on Sockets & Contactors